GAME-PERFECT GRAPHS AND DIGRAPHS

STEPHAN DOMINIQUE ANDRES
Department of Mathematics
Brandenburgische Technische Universität Cottbus-Senftenberg
e-mail: dominique.andres@b-tu.de

EDWIN LOCK
Mathematical Institute
University of Oxford
e-mail: edwin.lock@maths.ox.ac.uk

Strong and weak digraph colouring games are played on a digraph \(D \) with a given colour set \(C \). Two players, \(A \) and \(B \), take turns to colour an uncoloured vertex \(v \) as follows: in strong games, \(v \)'s colour must be distinct from its in-neighbours, while in weak games [4], colouring \(v \) may not create monochromatic directed cycles. \(A \) wins if all vertices are coloured in the end. Let \(g_X \) denote the game in which player \(X \) begins. Both variants of \(g_A \) generalize the graph colouring game [2]. The smallest \(|C| \) such that \(A \) has a winning strategy is called the game chromatic number of \(D \). The digraph \(D \) is game-perfect if the game chromatic number of any induced subdigraph \(H \) of \(D \) equals the (symmetric) clique number of \(H \). We characterize \(g_A \)-resp. \(g_B \)-perfect graphs by a set of 7 resp. 15 forbidden induced subgraphs [1, 3]. We reduce the characterization of weakly game-perfect digraphs to the undirected case and prove that strongly \(g_A \)-perfect digraphs have a kernel.

Keywords: game chromatic number, game-perfect (di)graph, kernel.

AMS Subject Classification: 05C15, 05C57, 05C17.

References

