DISTANCE FIBONACCI NUMBERS

ANDRZEJ WŁOCH

Rzeszow University of Technology
Department of Mathematical Modeling
POLAND

e-mail: awloch@prz.edu.pl

By numbers of the Fibonacci type we mean numbers defined recursively by the kth order linear recurrence relation

\[a_n = b_1 a_{n-1} + b_2 a_{n-2} + \ldots + b_k a_{n-k} \] \hspace{1cm} (1)

for \(n \geq k \), where \(k \geq 2 \) and \(b_i \geq 0 \), \(i = 1, \ldots, k \), are integers and \(a_0, \ldots, a_{k-1} \) are fixed integers.

For special value \(k \) and \(b_i \), \(i = 1, \ldots, k \) the equality (1) gives the recurrences which define the Fibonacci numbers and their distance generalizations.

1. Fibonacci numbers \(F_n = F_{n-1} + F_{n-2} \), \(n \geq 2 \) with \(F_0 = F_1 = 1 \).

2. \(k \)-generalized Fibonacci numbers (E.P. Miles) 1960

\(f_n = F_{n-1} + f_{n-2} + \ldots + f_{n-k} \), \(k \geq 2 \), \(n > k \) with \(f_i = 0 \) for \(0 \leq i \leq k-2 \) and \(f_{k-1} = f_k = 1 \).

3. generalized Fibonacci numbers \(F(k, n) \) (M. Kwaśnik, I. Włoch) 2000

\(F(k, n) = F(k, n-1) + F(k, n-k) \), \(k \geq 2 \), \(n \geq k \) with \(F(k, n) = n + 1 \) for \(n = 0, 1, \ldots, k - 1 \)

In the talk we give other types of distance Fibonacci numbers. We show their distinct interpretations also in graphs.

Keywords: recurrence equation, Fibonacci numbers.

AMS Subject Classification: 05C69, 05C05.