ON PROPER (1,1,2)-KERNELS IN GRAPHS

IWONA WLOCH

Rzeszow University of Technology
Department of Discrete Mathematics
POLAND

e-mail: iwloch@prz.edu.pl

Let G be an undirected, connected, simple graph. A subset $J \subset V(G)$ is a $(1,1,2)$-kernel of G if J is independent and for each vertex $x \in V(G) \setminus J$ there are in J three distinct vertices y, u, v such that $xy \in E(G)$, $xu \in E(G)$ and $d_G(x, v) \leq 2$. If for each vertex $x \in V(G) \setminus J$ there is $v \in J$ such that $d_G(x, v) = 2$ then a subset J is a proper $(1,1,2)$-kernel of G.

Every $(1,1,2)$-kernel (also a proper $(1,1,2)$-kernel) is a kernel, a 2-dominating kernel and a $(1,2)$-kernel of G.

In the talk we give necessary and sufficient conditions for the existence of proper $(1,1,2)$-kernels in graphs.

Keywords: independence, domination, kernel.

AMS Subject Classification: 05C69, 05C05.

References