A k-coloring of a connected graph G of order $n \geq 3$ is a k-partiton $\Pi = \{S_1, \ldots, S_k\}$ of $V(G)$ into independent sets, called colors. A k-coloring is called neighbor-locating if for every pair of vertices u, v belonging to the same color S_i, there exist a color S_j such that either u or v has some neighbors in S_j, but not both. The neighbor-locating-chromatic number $\chi_{NL}(G)$ is the minimum cardinality of a neighbor-locating-coloring of G.

It is shown that $3 \leq \chi_{NL}(G) \leq n$, and that $\chi_{NL}(G) = n$ if and only if G is a complete multipartite graph. It is also proved that if $\Delta(G) = \Delta$ and $\chi_{NL}(G) = k$, then $n \leq k \cdot (\min\{2^{k-1} - 1, \sum_{j=1}^{\Delta} \binom{k-1}{j}\})$ and that this bound is tight. The neighbor-locating-chromatic number of paths and cycles are determined. A number of results for pseudotrees, i.e., for trees and unicyclic graphs are also established.

Keywords: coloring, domination, location, vertex partition.

AMS Subject Classification: 05C69, 05C15, 05C78.

References

