HEAVY SUBGRAPHS AND THE EXISTENCE OF CYCLES IN 2-CONNECTED GRAPHS

Wojciech Widel

Faculty of Applied Mathematics
AGH University of Science and Technology
e-mail: widel@agh.edu.pl

Let G be a simple 2-connected graph on n vertices. We say that a vertex $v \in V(G)$ is heavy if $d_G(v) \geq n/2$ and that it is super-heavy if $d_G(v) \geq (n + 1)/2$. The well-known theorem due to Fan states that if at least one vertex from every pair of vertices $x, y \in V(G)$ satisfying $d_G(x, y) = 2$ is heavy then G is hamiltonian.

One can demand for this so called Fan-type condition to be satisfied not in the whole graph G but only in some of its induced subgraphs. Let H be a finite family of graphs. We say that G is H-f-heavy (f_1-heavy) if for every induced subgraph H of G isomorphic to one of the graphs from H and for every two vertices $x, y \in V(H)$ $d_G(x, y) = 2$ implies that at least one of them is heavy (super-heavy).

In this talk we will present pairs and triples of subgraphs for which G being -f-heavy (f_1-heavy) implies that G is hamiltonian (pancyclic).

Keywords: cycles, Fan-type heavy subgraph, Hamilton cycle, pancyclicity.

AMS Subject Classification: 05C38, 05C45.