ON A RELATION BETWEEN k-PATH PARTITION AND k-PATH VERTEX COVER

Christoph Brause
Institute of Discrete Mathematics und Algebra
TU Bergakademie Freiberg, Germany
e-mail: brause@math.tu-freiberg.de

Rastislav Krivoš-Belluš
Institute of Computers Science, Faculty of Science
Pavol Jozef Šafárik University in Košice, Slovak Republic
e-mail: rastislav.krivos-bellus@upjs.sk

The vertex cover problem and the vertex partition problem are central problems in graph theory and many generalizations are known. Two examples are the minimum k-path vertex cover problem (MkPVCP for short, introduced in [1]), which asks for a minimum vertex sets covering every path of length $k-1$, and the minimum k-path partition problem (MkPPP for short, introduced in [2]), which asks for a minimum number of paths in a maximal path packing whose every path has at least one and at most k vertices.

In this talk we will present a relation between MkPPP and MkPVCP, which gives us new bounds for their invariants and a new necessary condition for NP-hardness of MkPVCP in terms of forbidden subgraphs.

Keywords: k-path partition, k-path vertex cover, forbidden subgraphs.

AMS Subject Classification: 05C70, 05C85.

References

\[1\] The research of the author was partially supported by the contract VEGA 1/0142/15.