ON THE RESTRAINED ROMAN DOMINATION IN GRAPHS

NADER JAFARI RAD

Shahrood University of Technology, Iran

E-mail: n.jafarirad@gmail.com

MARCIN KRYWKOWSKI

University of Johannesburg, South Africa

E-mail: marcin.krzywkowski@gmail.com

A Roman dominating function (RDF) on a graph G is a function $f: V(G) \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex v for which $f(v) = 0$, is adjacent to at least one vertex u for which $f(u) = 2$. The weight of a Roman dominating function f is the value $f(V(G)) = \sum_{v \in V(G)} f(v)$. The Roman domination number of G, denoted by $\gamma_R(G)$, is the minimum weight of an RDF on G. For a given graph, a Roman dominating function $f = (V_0, V_1, V_2)$ is a restrained Roman dominating function (rRDF) if every vertex of V_0 has a neighbor in V_0. The restrained Roman domination number of G, denoted by $\gamma_{rR}(G)$, is the minimum weight of an rRDF on G. We first show that the restrained Roman domination problem is NP-complete. Then we give various bounds and characterizations. Finally we study restrained Roman domination in random graphs.

Keywords: Roman domination, restrained Roman domination, complexity, probabilistic method, random graph.

AMS Subject Classification: 05C05, 05C69.

References
