THE 3/5-CONJECTURE FOR THE DOMINATION GAME PLAYED ON TREES

MICHAEL A HENNING
University of Johannesburg
e-mail: mahenning@uj.ac.za

CHRISTIAN LÖWENSTEIN
Ulm University
e-mail: christian.loewenstein@uni-ulm.de

The domination game is played on a graph G by two players, named Dominator and Staller. They alternately take turns choosing vertices of G such that each chosen vertex dominates at least one vertex not dominated by the vertices previously chosen. The game ends when the set of vertices chosen becomes a dominating set in G. Dominator wishes to end the game with a minimum number of vertices chosen, and Staller wishes to end the game with as many vertices chosen as possible. The game domination number, $\gamma_g(G)$, of G is the minimum possible number of vertices chosen when Dominator starts the game and both players play according to the rules. In this talk, we discuss the 3/5-Conjecture posted by Kinnersley, West, and Zamani that if G is an isolate-free graph of order n, then $\gamma_g(G) \leq \frac{3}{5}n$. We provide constructions of trees reaching the conjectured $\frac{3}{5}$-bound, showing that if the conjecture is true, the family of extremal trees is a very rich one.

Keywords: Game domination, 3/5-Conjecture, trees.

AMS Subject Classification: 05C69, 05C05.

References

