Let F be a fixed graph. An induced F-decomposition of a graph G is an edge decomposition into graphs F_1, \ldots, F_m such that each F_i is isomorphic to F and is an induced subgraph of G. We survey results and open problems concerning the following Turán-type question raised by Bondy and Szwarcfiter: Given F, what is the maximum number of edges in a graph of order n that admits an induced F-decomposition?