COLORED-INDEPENDENCE ON BIPARTITE GRAPHS

SARAH LANGE, MICHAEL TERHAAR, AND ANNE SINKO

Department of Mathematics
College of St. Benedict/St. John’s University

e-mail: slange@csbsju.edu, mterhaar@csbsju.edu, asinko@csbsju.edu

Colored-independence is a storage/scheduling problem which, in addition to the standard restriction involving pairs of elements that cannot be placed together, considers sets of elements that must be placed together. A set S is a colored-independent set if, for each color class V_i, $S \cap V_i = V_i$ or $S \cap V_i = \emptyset$. Results for the independence-partition number, $\beta_{\text{PRT}}(G)$, and the lower independence-partition number, $i_{\text{PRT}}(G)$, for a variety of families will be presented, including paths, cycles, grids, and a characterization of bipartite graphs that achieve $i_{\text{PRT}}(T) = |V_1|$ where V_1 is the smaller of the bipartition sets of graph G. Restrictions placed on the size of each V_i will also be considered, particularly $\beta_{\text{cpl}}(G)$ where for each V_i, $|V_i| \leq 2$.

Keywords: Independence, Colored-independence.

AMS Subject Classification: 05C69, 05C70.

References

