If G and H are two cubic graphs, then an H-coloring of G is a proper edge-coloring f with edges of H, such that for each vertex x of G, there is a vertex y of H with $f(\partial_G(x)) = \partial_H(y)$. If G admits an H-coloring, then we will write $H \prec G$. The Petersen coloring conjecture of Jaeger states that for any bridgeless cubic graph G, one has: $P \prec G$ [1]. Recently, the second author has introduced the Sylvester coloring conjecture, which states that for any cubic graph G one has: $S \prec G$ [2], where S is the well-known Sylvester graph on ten vertices. In this work, we prove the analogue of Sylvester coloring conjecture for cubic pseudo-graphs. Moreover, we introduce the analogue of this conjecture for simple cubic graphs. Our conjecture states that for any simple cubic graph G one has $S' \prec G$, where S' is the smallest simple cubic graph without a perfect matching. Related with this new conjecture, we conjecture that the new one implies the older one. Moreover, we show that if G is a connected simple cubic graph with $G \prec S'$, then G is isomorphic to S'. Finally, we show that any cubic graph G has a coloring with edges of Sylvester graph S such that at least $\frac{4}{5}$ of vertices of G meet the conditions of Sylvester coloring conjecture.

Keywords: cubic graph; Petersen coloring conjecture; Sylvester coloring conjecture.

AMS Subject Classification: 05C15, 05C70.

References
