Let G be a graph, $\delta_G(v)$ the degree of a vertex v in G, k an integer and n a positive integer. We establish a connection between the following three domination related concepts:

- Given a nonempty set $M \subseteq V(G)$ a vertex v of G is said to be k-controlled by M if $\delta_M(v) \geq \frac{\delta_G(v)}{2} + k$. The set M is called a k-monopoly for G if it k-controls every vertex v of G.

- A function $f : V(G) \to \{-1, 1\}$ is called a n-signed total dominating function for G if $f(N(v)) = \sum_{v \in N(v)} f(v) \geq n$ for all $v \in V$.

- A nonempty set $S \subseteq V$ is a global (defensive and offensive) k-alliance in G if $\delta_S(v) \geq \delta_V(G) - S(v) + k$ holds for every $v \in V(G)$.

In addition we show that 0-monopolies present an NP-complete problem and give a polynomial algorithm for trees. We also present some general bounds for k-monopolies and derive some exact values.

Keywords: k-monopolies, k-signed total domination, global defensive k-alliance, global offensive k-alliance.

AMS Subject Classification: 05C69, 05C07.