COLORINGS OF PLANE GRAPHS WITHOUT LONG MONOCHROMATIC FACIAL PATHS

JÚLIUS CZAP

Department of Applied Mathematics and Business Informatics, Faculty of Economics,
Technical University of Košice, Némcovej 32, 04001 Košice, Slovakia

e-mail: julius.czap@tuke.sk

IGOR FABRICI AND ŠTANISLAV JENDRÔL

Institute of Mathematics, P. J. Šafárik University,
Jesenná 5, 04001 Košice, Slovakia

e-mail: igor.fabrici@upjs.sk, stanislav.jendrol@upjs.sk

Let G be a plane graph. A facial path of G is a subpath of the boundary walk of a face of G. We prove that each plane graph admits a 3-coloring (a 2-coloring) such that every monochromatic facial path has at most 3 vertices (at most 4 vertices). These results are in a contrast with the results of Chartrand, Geller, Hedetniemi (1968) and Axenovich, Ueckerdt, Weiner (2017) which state that for any positive integer t exists a 4-colorable (3-colorable) plane graph G_t such that in any its 3-coloring (2-coloring) there is a monochromatic path of length at least t.

Keywords: plane graph, facial path, vertex-coloring.

AMS Subject Classification: 05C10, 05C15.