ON GRAPHS ADMITTING TWO DISJOINT MAXIMUM INDEPENDENT SETS

ZAKIR DENIZ
Department of Mathematics, Duzce University, Turkey
e-mail: zakirdeniz@duzce.edu.tr

VADIM E. LEVIT
Department of Computer Science, Ariel University, Israel
e-mail: levitv@ariel.ac.il

EUGEN MANDRESCU
Department of Computer Science, Holon Institute of Technology, Israel
e-mail: eugen_m@hit.ac.il

An independent set S in a graph G is maximal if it is not a proper subset of any independent set, while S is maximum if it has a maximum size, denoted as $\alpha(G)$. The problem of whether a graph has a pair of disjoint maximal independent sets was introduced by Claude Berge in early 70’s. Further, this topic was studied in [1, 3, 4].

In this paper, we are focused on finding conditions ensuring existence of two disjoint maximum independent sets.

Theorem 1 The graph G has two disjoint maximum independent sets if and only if there exists a matching M of size $\alpha(G)$ such that $G[V(M)]$ is a bipartite graph, where $V(M)$ is the set of vertices covered by M.

Let $v \in V(G)$. If for every independent set S of $G - N[v]$, there exists some $u \in N(v)$ such that $S \cup \{u\}$ is independent, then v is a shedding vertex of G [5]. Let $\text{Shed}(G)$ denote the set of all shedding vertices.

Theorem 2 If G has a maximum independent set $S \subseteq \text{Shed}(G)$, then $|\Omega(G)| \geq 2^{\alpha(G)}$, while some $I \in \Omega(G)$ is disjoint from S, where $\Omega(G)$ is the family of all maximum independent sets.

If $\alpha(G) + \mu(G) = |V(G)|$, then G is a König-Egerváry graph, where $\mu(G)$ is the size of a largest matching.

Theorem 3 G is a König-Egerváry graph with two disjoint maximum independent sets if and only if it is a bipartite graph having a perfect matching.
A graph G is unicyclic if it is connected and has a unique cycle.

Theorem 4 A unicyclic graph G has two disjoint maximum independent sets if and only if, either G is a bipartite graph with a perfect matching, or there is a vertex v belonging to its unique cycle, such that $G - v$ is a forest with a perfect matching.

Corollary 5 One can decide in polynomial time whether a unicyclic graph has two disjoint maximum independent sets.

It is known that the decision problem whether there are two disjoint maximal independent sets in a graph is **NP-complete** [2].

Conjecture 6 It is **NP-complete** to recognize graphs with two disjoint maximum independent sets.

Keywords: independent set, shedding vertex, König-Egerváry graph.

AMS Subject Classification: 05C69, 05C75.

References

