GLOBAL COMPLETE ALLIANCES IN GRAPHS

MICHAŁ MALAFIEJSKI, KRYSZTOF OCETKIEWICZ AND KACPER WERESZKO

Department of Algorithms and System Modeling, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology

e-mail: michal@animima.org, krzysztof.ocetkiewicz@eti.pg.edu.pl, kacper.wereszko@pg.edu.pl

Let $S \subset V(G)$ be a subset of vertices of a given simple nonempty graph G. We define for any non-empty subset X of S the predicate $SEC_{G,S}(X) = \text{true}$ iff $|N_G[X] \cap S| \geq |N_G[X] \setminus S|$, where $N_G[X]$ is a closed neighborhood of X in graph G. Set S is a complete alliance in G iff for each clique K in $G[S]$ we have $SEC_{G,S}(V(K)) = \text{true}$. Note that $1 \leq |V(K)| \leq \omega(G[S]) \leq \omega(G)$, where $\omega(G)$ is the clique number of a graph G. A complete alliance S is a global complete alliance in G if it also dominates G. By $\gamma_c(G)$ we denote the size of the minimum global complete alliance in graph G.

Authors present their results on problem of finding a minimum global complete alliance in a graph. Authors analyze computational complexity of the problem, showing its NP-completeness and presenting some polynomial time algorithms for complete k-ary trees, complete k-partite graphs, as well as for elementary classes of graphs (paths, cycles, etc.). Moreover, bounds on γ_c for some family of graphs are presented.

The presented problem is related to the global defensive alliance [1], global defensive set [2], and global edge alliance [3] problems.

Keyswors: Global complete alliance, global alliance, global defensive set, global edge alliance.

AMS Subject Classification: 05C69.

References

