The Maker-Breaker domination game [1] is played on a graph G by Dominator and Staller. The players alternatively select a vertex of G that was not yet chosen in the course of the game. Dominator wins if at some point the vertices he has chosen form a dominating set. Staller wins if Dominator cannot form a dominating set. The Maker-Breaker domination number $\gamma_{MB}(G)$ of G is the minimum number of moves of Dominator to win the game provided that he has a winning strategy and is the first to play. If Staller plays first, then the corresponding invariant is denoted $\gamma'_{MB}(G)$. It will be demonstrated that these invariants behave much differently than the related game domination numbers. Using the Erdős-Selfridge Criterion a large class of graphs G will be presented for which $\gamma_{MB}(G) > \gamma(G)$ holds. Residual graphs will be introduced and used to bound/determine $\gamma_{MB}(G)$ and $\gamma'_{MB}(G)$. Using residual graphs, $\gamma_{MB}(T)$ and $\gamma'_{MB}(T)$ will be determined for an arbitrary tree.

Keywords: Maker-Breaker domination game, Maker-Breaker domination number, domination game.

AMS Subject Classification: 05C57, 05C69, 91A43.

References
