SOME COMBINATORIAL PROPERTIES OF ABELIAN CAYLEY GRAPHS

MOHAMMAD A. IRANMANESH AND NASRIN MOGHADDAMI

Department of Mathematical Science
Yazd University, Yazd, I. R. Iran

e-mail: iranmanesh@yazd.ac.ir, n.moghaddami92@gmail.com

Let (G, \cdot) be a group and $S = S^{-1}$ be a non-empty subset of G not containing the identity element e of G. The Cayley graph $\text{Cay}(G, S)$ is the simple graph having vertex set G and edge set $\{\{v, vs\} | v \in G, s \in S\}$. A Cayley graph is said to be an Abelian Cayley graph whenever G is an Abelian group.

Let $\Sigma = (\Gamma, \sigma)$ be a signed graph (or sigraph in short), where Γ is the underlying graph of Σ and $\sigma : E \longrightarrow \{+, -\}$ is a function.

In this talk we investigate some combinatorial properties of Abelian Cayley graphs such as dominating number, total dominating number and diameter. Indeed we will investigate balancing, clusterability and sign-compatibility of $\Sigma = (\Gamma, \sigma)$ where Γ, the underlying graph, is an Abelian Cayley graph.

Keywords: Abelian Cayley graph, dominating number, sign graph.

AMS Subject Classification: 05C69, 05C25.

References

