Let H be a digraph possibly with loops, let D be a multidigraph, and let $c : A(D) \to V(H)$ be a coloring of the arcs of D with the vertices of H. A walk W in D, $W = (x_0, x_1, \ldots, x_n)$, is an H-walk if the consecutive colors on W also form a walk in H. For $u, v \in V(D)$, we say that u reaches v by an H-walk if there exist an H-walk from u to v in D. A subset $K \subseteq V(D)$ is a kernel by H-walks of D if every vertex in $V(D) - K$ reaches some vertex in K by an H-walk (absorbent by H-walks), and no vertex in K can be reached by another vertex in K by an H-walk in D (independent by H-walks).

Let \mathcal{B}_1 be the family of digraphs H such that for every H-colored tournament T, T has a kernel by H-walks. In this talk, we provide sufficient conditions for a digraph to belong to \mathcal{B}_1. We prove that the asymmetric, locally in-complete and locally out-complete digraphs, without C_3 in the complement, are in \mathcal{B}_1. Also we show that a kernel perfect digraph, without C_3 in the complement, such that is locally semicomplete or quasi-transitive is in \mathcal{B}_1.

Keywords: Edge colored digraph, Kernels in digraphs, Kernel by H-walks.

AMS Subject Classification: 05C20, 05C69.

References
