ON REGULAR RAMSEY MINIMAL GRAPHS

Kristiana Wijaya, Edy Tri Baskoro and Hilda Assiyatun

Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132 Indonesia

e-mail: kristiana.wijaya@yahoo.com, {ebaskoro,hilda}@math.itb.ac.id

Regularity in graphs has many advantages (theoretical as well as practical advantages). For graphs F, G and H, we write $F \rightarrow (G, H)$ to mean that if the edges of F are arbitrarily bi-coloured, say red or blue, then either the red subgraph of F contains a copy of G or the blue subgraph of F contains a copy of H. A graph F (without isolated vertices) is called a Ramsey (G, H)-minimal graph if $F \rightarrow (G, H)$ but for each $e \in E(F)$, $F - e \not\rightarrow (G, H)$. The set of all Ramsey (G, H)--minimal graphs is denoted by $\mathcal{R}(G, H)$.

The problems of characterising and/or constructing Ramsey (G, H)-minimal graphs for certain graphs G and H are very challenging. Some of the papers have devoted to this problem in particular for $G = mK_2$, see [1], [2] and [3]. In this paper, we construct a class of Ramsey (mK_2, H)-minimal graphs of regular degree if H is either a triangle or a path P_n. Furthermore, we introduce a procedure to obtain new regular Ramsey (mK_2, H^*)-minimal graphs from known regular Ramsey (mK_2, H)-minimal graphs, if $H^* \supseteq H$.

Keywords: Ramsey minimal graph, matching, triangle, path.

AMS Subject Classification: 05D10, 05C55.

References

