Every dominating set of the smallest possible cardinality is called γ-set. We consider a graph $\gamma.G$, whose vertices correspond to γ-sets of G, and two γ-sets S, S' are adjacent in $\gamma.G$ if there exist such vertices $u, v \in V(G)$ that $S = S' \setminus \{u\} \cup \{v\}$ and $u \neq v$.

The notion of gamma graph is different depending on the author. We consider γ-graph defined by Lakshmanan and Vijayakumar in [3]. Fricke et al. considered a subclass of the class defined above. They required, that the vertices u and v in the adjacency condition are adjacent in the graph G. The gamma graph defined in [1] is denoted by $G(\gamma)$.

The results presented in this talk refer to some questions of Fricke et al. [1] about gamma graphs of trees. We will show that $\Delta(T(\gamma)) = \mathcal{O}(n)$ for any tree. We will also present counterexamples which prove that the equality $|V(T(\gamma))| < 2^{\gamma(T)}$ is not true for any tree T. We will also say a few words about the diameter of a gamma tree.

Keywords: dominating sets, gamma graph, maximal degree, gamma tree.

AMS Subject Classification: 05C69, 05C07.

References

