A SURVEY ON A GENERALIZATION OF BINARY SEARCH

DARIUSZ DEREJNIOWSKI

Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology
e-mail: deren@eti.pg.gda.pl

In this talk we discuss a problem of searching for an element in a partially ordered set. This problem is a generalization of binary search in a sorted array and can be stated as follows. For a given partial order \((X, \leq) \) and an unknown element \(x \), the goal is to locate \(x \) in \(X \) by asking the minimum number of queries in the worst case. Each query is a question of such form: Does it hold \(x \leq t \) where \(t \in X \)? This problem is completely solved in case of tree-like partial orders for which linear time algorithms are known [3, 4]. An interesting generalization involves introducing non-uniform query times and in such case one wants to minimize the worst case duration of a search strategy. In such scenario, the problem is NP-complete for trees [1, 2]. We discuss several known results for this version of the problem.

Keywords: binary search, edge ranking, partial orders.

AMS Subject Classification: 05C85, 68W25, 68Q17.

References

