Partition Dimension of Some Families of Trees

Darmaji, R. Simanjuntak, S. Uttunggadewa Combinatorial Mathematics Group Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung, Bandung 40132, Indonesia

Abstract

For an ordered set $W = \{w_1, w_2, \dots, w_k\}$ of vertices in a connected graph G, the metric representation of a vertex v with respect to W is the vector $r(v|W) = (d(v, w_1), d(v, w_2), \dots, d(v, w_k))$. A set W is called a resolving set of G if for every vertex v of G, its representation with respect to W is unique. A resolving set of Gis called basis of G if it has minimum cardinality among all resolving sets of G. The metric dimension of G is the cardinality of a basis of G.

Given an ordered partition $\Pi = \{P_1, P_2, \dots, P_t\}$ of vertices of a connected graph G, the partition representation of a vertex v with respect to Π is the vector $r(v|\Pi) = (d(v, P_1), d(v, P_2), \dots, d(v, P_t))$. Π is a resolving partition for G if for every vertex v of G, its representation with respect to Π is unique. The partition dimension of G is the minimum number of sets in any resolving partition for G.

The metric dimensions of trees are known due to Chartrand *et. al* (2000); however, only few results on partition dimensions of trees are known. Here we determine the partition dimensions of caterpillars, firecrackers, and banana trees.