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Let F be the family of planar graphs without cycle of length 4 and 5.
Steinberg’s Conjecture (1976) [2] that says every graph of F is 3-colorable
remains widely open. Focusing on a relaxation proposed by Erdős (1991),
many studies proved the conjecture for some subfamilies of F . For example,
Borodin et al. [1] proved that every planar graph without cycles of length 4
to 7 is 3-colorable.
A graph G = (V,E) is said to be (i, j, k)-colorable if its vertex set can be
partitioned into three sets V1, V2, V3 such that the graphs G[V1], G[V2], and
G[V3] induced by the vertices of V1, V2, V3 have maximum degree at most
i, j, k respectively. Under this terminology, Steinberg’s Conjecture says that
every graph of F is (0, 0, 0)-colorable. A result of Xu [3, 4] implies that
every graph of F is (1, 1, 1)-colorable. We will give obtained results for
(i, j, k)-colorings of graphs of F .
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