ON THE CROSSING NUMBER OF PRODUCTS OF 6-VERTEX GRAPHS WITH PATHS

MARIÁN KLEŠČ AND JANA PETRILLOVÁ

Faculty of Electrical Engineering and Informatics Technical University of Košice e-mail: marian.klesc@tuke.sk, jana.petrillova@tuke.sk

Let G_1 and G_2 be simple graphs with vertex sets $V(G_1)$ and $V(G_2)$, and edge sets $E(G_1)$ and $E(G_2)$. The Cartesian product $G_1 \times G_2$ of graphs G_1 and G_2 has vertex set $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ and any two vertices (u, u') and (v, v') are adjacent in $G_1 \times G_2$ if and only if either u = v and u'is adjacent with v' in G_2 , or u' = v' and u is adjacent with v in G_1 . The crossing number, cr(G), of a graph G is the minimal number of pairwise intersections of nonadjacent edges in any drawing of G in the plane.

There are known exact values concerning the crossing numbers of the Cartesian product of paths, cycles and stars with some graphs of order four and five (see [1], [3], [4]). The similar problem was solved in [2] also for the Cartesian product of cycles with 6-vertex trees. The aim of this presentation is to determine the crossing numbers of the Cartesian product of the path P_n on n edges with some graphs of order six. We give first the crossing number of the Cartesian product of the special graph H on six vertices with the path and then we use this result to find crossing numbers of Cartesian product of another 6-vertex graphs with the path P_n .

Keywords: graph, drawing, crossing number, Cartesian product. AMS Subject Classification: 05C10, 05C38.

References

- L. W. Beineke, R. D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145–155.
- [2] M. Draženská, M. Klešč, The crossing numbers of products of cycles with 6-vertex trees, Tatra Mt. Math. Publ. 36 (2007) 109–119.
- [3] S. Jendrol', M. Ščerbová, On the crossing numbers of $S_m \times P_n$ and $S_m \times C_n$, Časopis pro pěstování matematiky 107 (1982) 225–230.
- [4] M. Klešč, The crossing numbers of Cartesian products of paths with 5-vertex graphs, Discrete Math. 233 (2001) 353-359.