EQUALITY OF DOMINATION AND TRANSVERSAL NUMBERS IN HYPERGRAPHS

S. Arumugam¹

National Centre for Advanced Research in Discrete Mathematics Kalasalingam University, India. e-mail: s.arumugam.klu@gmail.com

BIBIN K. JOSE

PG Department of Mathematics, S. D. College Alappuzha, India e-mail: bibinkjose2002@yahoo.com

CSILLA BUJTÁS

Department of Computer Science and Systems Technology University of Pannonia, Hungary e-mail: bujtas@dcs.vein.hu

ZSOLT TUZA²

Computer and Automation Institute, Hungarian Academy of Sciences e-mail: tuza@sztaki.hu

The domination number $\gamma(\mathcal{H})$ and the transversal number $\tau(\mathcal{H})$ (also called vertex covering number) of a hypergraph \mathcal{H} are defined analogously to those of a graph. A hypergraph is of rank k if each edge contains at most k vertices. The inequality $\tau(\mathcal{H}) \geq \gamma(\mathcal{H})$ is valid for every hypergraph \mathcal{H} without isolated vertices. We study the structure of hypergraphs satisfying $\tau(\mathcal{H}) = \gamma(\mathcal{H})$, moreover prove that the corresponding recognition problem is NP-hard already on the class of linear hypergraphs of rank 3. We focus our attention mostly on hypergraphs for which $\tau = \gamma$ hereditarily holds, that is in which each subhypergraph \mathcal{H}' without isolated vertices fulfills the equality $\tau(\mathcal{H}') = \gamma(\mathcal{H}')$. We prove that if each induced subhypergraph satisfies the equality then it holds for the non-induced ones as well. Moreover, for every positive integer k, there are only a finite number of forbidden subhypergraphs of rank k, and each of them has domination number at most k. Thus, hypergraphs for which $\tau = \gamma$ hereditarily holds can be recognized in polynomial time if the rank is fixed.

Keywords: hypergraph, domination number, transversal number.

AMS Subject Classification: 05C65, 05C69.

¹Also affiliated with the School of Electrical Engineering and Computer Science, The University of Newcastle, Australia.

 $^{^2\}mathrm{Also}$ affiliated with the Department of Computer Science and Systems Technology, University of Pannonia, Hungary.