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THE ORDER OF HYPOTRACEABLE ORIENTED
GRAPHS

Susan van Aardt and Marietjie Frick

UNISA, South Africa

Morten Hegner Nielsen

University of Winnipeg, Canada

Peter Katreni£

P.J. �afárik University, Slovakia

An oriented graph D is traceable if it contains a path that visits every vertex
and is hypotraceable if D is not traceable but D − v is traceable for every
v ∈ V (D). Grötschel et al. constructed in [1] and [2] an in�nite family of
hypotraceable oriented graphs, the smallest of which has order 13. These are
the only constructions of hypotraceable oriented graphs that appear in the
literature. We show that there exist hypotraceable oriented graphs of order n
for every n ≥ 8, except possibly for n = 9, 11.

Keywords: hypotraceable; hypohamiltonian; k-traceable; oriented graph.

AMS Subject Classi�cation: 05C20, 05C38.
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J. Graph Theory 4 (1980) 377�381.
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SOME PROPERTIES OF LOCAL KNESER GRAPHS

Meysam Alishahi

Department of Mathematical Sciences
Shahid Beheshti University, G.C.

P.O. Box 1983963113, Tehran, Iran

e-mail: m_alishahi@sbu.ac.ir

Local Kneser graph Ut(n, r) is de�ned in [3]. The graph Ut(n, r) is a general-
ization of local complete graph U(n, r) ([2]) and de�ned as follows.

Let n, r and t be positive integers where n ≥ r ≥ 2t. Set Ut(n, r) to be
the local Kneser graph whose vertex set contains all ordered pairs (A,B) such
that |A| = t, |B| = r− t, A,B ⊆ [n] and A∩B = ∅. Also, two vertices (A,B)
and (C,D) of Ut(n, r) are adjacent if A ⊆ D and C ⊆ B.

In this talk, we review some properties of local Kneser graphs [1]. In this
regard, as a generalization of the Erdös-Ko-Rado theorem, we characterize the
maximum independent sets of local Kneser graphs. Next, we provide an upper
bound for their chromatic number.

Keywords: Erdös-Ko-Rado theorem, graph homomorphism, local chromatic
number.

AMS Subject Classi�cation: 05C.
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graphs with locally few colors, Discrete Math. 59 (1986) 21�34.
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ber and sperner capacity, J. Combin. Theory (B) 95 (2005) 101�117.

This paper is partially supported by center of excellence in algebraic and logical structure
in discrete mathematics in Shahid Beheshti University.



abstracts 11

RANDOM PROCEDURES FOR DOMINATING SETS IN
BIPARTITE GRAPHS

Sarah Artmann and Anja Pruchnewski

(TU Ilmenau)

Using multilinear functions and random procedures, new upper bounds on the
domination number of a bipartite graph in terms of the cardinalities and the
minimum degrees of the two color classes are established.
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THE EQUAL SUM FREE SUBSET PROBLEM

Gábor Bacsó and Zsolt Tuza

Computer and Automation Research Institute
Hungarian Academy of Sciences

In practice, competitions can occur, where the competitors have weights and we
want to compare two groups with equal sum of weights. One of the theoretical
problems involved here is the following:

Let w1, w2, . . . , wn be a sequence of positive integers (repetition is allowed).
A set I ⊆ {1, . . . , n} is dependent if there exist nonempty subsets J,K ⊆ I
such that

1) The sum of the for j ∈ J is equal to the sum for k ∈ K
2) The sets {wj : j ∈ J} and {wk : k ∈ K} are disjoint.

A set I is independent if it is not dependent. Given n, the question is, how
large independent set we can guarantee for any sequence of length n.
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CHROMATIC AND FLOW UNIQUENESS IN A FAMILY
OF 2-CONNECTED GRAPHS

Halina Bielak

Institute of Mathematics, UMCS, Lublin, Poland

e-mail: hbiel@hektor.umcs.lublin.pl

Chromatic and �ow polynomials of a graph are two important cases of its
Tutte polynomial. Each of them contains much information of the graph. We
present some in�nite classes of 2-connected graphs determined by their chro-
matic polynomials and �ow polynomials together, but which are not chromatic
unique and are not �ow unique. Some interesting results in this subject are
published in [1] (see the references in [1] as well).

Keywords: chromatic polynomial, chromatic uniqueness, �ow polynomial,
�ow uniqueness, chromatic and �ow uniqueness.

AMS Subject Classi�cation: 05C15.

References

[1] Yinghua Duan, Haidong Wu, Qinglin Yu, On chromatic and �ow polyno-
mial unique graphs, Discrete Appl. Math. 156 (2008) 2300�2309.
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AN UPPER BOUND FOR THE SIZE OF A SMALLEST
INDEPENDENT DOMINATING SET OF A GRAPH

Peter Borg

University of Malta

Let G be a connected graph with |V (G)| ≥ 2 (where V (G) is the vertex set of
G). Let d(G) denote the maximum vertex degree in G and let µ(G) denote the
size of a smallest independent dominating set of G. Two trivial upper bounds
for µ(G) are |V (G)| − d(G) and d(G)

d(G)+1 |V (G)|. We introduce a new parameter
d′(G) that is at most equal to d(G), and we present the following improvement
of the latter bound, assuming G is not complete:

µ(G) ≤ d′(G)− 1

d′(G)
|V (G)|.

We exhibit graphs G for which

µ(G) = |V (G)| − d(G) =
d′(G)− 1

d′(G)
|V (G)| − d′(G) + 2,

and we conjecture that the right-hand side of the second equality is an upper
bound for any connected graph G.

Keywords: independent set, dominating set.

AMS Subject Classi�cation: 05C35, 05C69.
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ON-LINE RANKING OF SPLIT-GRAPHS

Piotr Borowiecki and Dariusz Dereniowski

Department of Algorithms and System Modeling
Faculty of Electronics, Telecommunications and Informatics

Gda«sk University of Technology
Narutowicza 11/12, 80-233 Gda«sk, Poland

A vertex ranking of a simple graph G is an assignment of integers to the vertices
of G such that each path connecting two vertices of the same color contains
a vertex of a bigger color. The goal is to �nd a vertex ranking using as few
colors as possible. In this paper we consider the on-line setting of the vertex
ranking problem for split graphs. We prove that the worst case ratio of the
number of colors used by any on-line ranking algorithm and the number of
colors used in optimal o�-line solution may be arbitrarily large. This negative
result gives motivation to consider the semi on-line problem, where the split
graph is presented on-line but its clique number is given in advance. We also
prove that any semi on-line ranking algorithm may be forced to use 2χr(G)
colors, where χr(G) is the (o�-line) vertex ranking number of G. Finally, the
semi on-line algorithm which achieves this bound, i.e. uses 2χr(G) colors in
the worst case is given.
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ON INDEPENDENT VERTEX SETS AND INDUCED
MATCHINGS

Andreas Brandstädt

Department of Computer Science
University of Rostock, Germany

(joint work with Chính T. Hoáng, Van Bang Le, Vadim V. Lozin, Ra�aele
Mosca and Ragnar Nevries)

Let G = (V,E) be a �nite undirected graph. A vertex set S ⊆ V is independent
(or stable) if the vertices in S are mutually nonadjacent. For given G, the
MAXIMUM INDEPENDENT SET (MIS) Problem asks for an independent
vertex set of maximum size in G. We discuss various techniques for solving the
MIS problem e�ciently on particular graph classes, and mention some open
problems. It is well known that clique separator decomposition and modular
decomposition are helpful tools for solving the MIS problem. One of our results
allows to combine both of them. This implies various improvements of known
results, among them a polynomial time algorithm for MIS on the class of apple-
free graphs which is a common generalization of chordal graphs as well as of
claw-free graphs.

For given G, the MAXIMUM INDUCED MATCHING (MIM) Problem
asks for an independent node set in the square L(G)2 of the line graph L(G)
of G, i.e., the nodes of L(G)2 are the edges of G, and two distinct edges are
adjacent in L(G)2 if they intersect each other or see each other in G. It is well
known that, unlike the Maximum Matching Problem, MIM is NP-complete,
and it remains NP-complete even for (very restricted subclasses of) bipartite
graphs and for line graphs. On the other hand, the problem is e�ciently
solvable for a variety of graph classes such as (weakly) chordal graphs and
graphs of bounded clique-width; many papers are dealing with the complexity
of the MIM problem on particular graph classes. We discuss the complexity
of this problem and its generalization in L(G)k for k ≥ 3 for some important
graph classes such as chordal graphs and strongly chordal graphs.

For given G, the DOMINATING INDUCED MATCHING (DIM) Prob-
lem (also called EFFICIENT EDGE DOMINATION (EED) Problem in various
papers) asks for the existence of an independent node set in L(G)2 which simul-
taneously is a dominating set in L(G). It is well known that the DIM problem
is NP-complete even on (very restricted subclasses of) bipartite graphs, and
its complexity has been open for weakly chordal graphs and even for chordal
bipartite graphs. One of our results shows that this problem is solvable in
polynomial time for hole-free graphs.
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3-CONSECUTIVE C-COLORINGS OF GRAPHS ∗

Csilla Bujtás1, E. Sampathkumar2, Zsolt Tuza1,3

M.S. Subramanya2 and Charles Dominic2

1Department of Computer Science
University of Pannonia

H�8200 Veszprém, Egyetem u. 10, Hungary

2Department of Mathematics
University of Mysore, Mysore, India

3Computer and Automation Institute
Hungarian Academy of Sciences

H�1111 Budapest, Kende u. 13�17, Hungary

A 3-consecutive C-coloring (3CC-coloring) of a graph G = (V,E) is a map-
ping ϕ : V → N such that no three-colored path P3 occurs. That is, among
any three consecutive vertices there exist at least two having the same color.
This coloring constraint has equivalent descriptions in the theory of mixed
[3] and color-bounded [1] hypergraphs. Moreover, it is closely related to the
3-consecutive colorings of graphs [2].

The maximum number χ̄3CC(G) of colors, that can occur in a 3CC-coloring
of a graph G, is the 3-consecutive upper chromatic number of G. In this talk
we present general estimates on χ̄3CC(G) in terms of several graph parameters.
In particular, exactly determined values of χ̄3CC(G) will be given if G is a tree
or a unicyclic graph.

On the other hand, we characterize graphs admitting 3-consecutive C-
colorings with exactly three and exactly four colors, respectively.

Keywords: graph coloring, vertex coloring, consecutive coloring, upper chro-
matic number.

AMS Subject Classi�cation: 05C15.

References

[1] Cs. Bujtás and Zs. Tuza, Color-bounded hypergraphs, I: General results,
Discrete Mathematics, (2009), doi: 10.1016/j.disc.2008.04.019, in print.

[2] E. Sampathkumar, M.S. Subramanya and Charles Dominic, 3-Consecutive
Vertex Coloring of a Graph, Proceedings of the International Conference
on Discrete Mathematics, (2008), 147�151.

∗Research supported in part by the Hungarian Scienti�c Research Fund, OTKA grant T-
049613, and Department of Science and Technology, Govt. of India, Project No. SR/S4/MS:
275/05.



abstracts 19

[3] V.I. Voloshin, Coloring Mixed Hypergraphs � Theory, Algorithms and Ap-
plications, Fields Institute Monographs 17, AMS, 2002.



20 abstracts

ON DOMINATION IN GRAPH PRODUCTS

Roman �ada

Department of Mathematics
University of West Bohemia

The well-known conjecture on domination number due to Vizing (1963) says
that for two graphs G and H and their cartesian product G�H, γ(G) ·γ(H) ≤
γ(G�H).

It is known that γ(G) · γ(H) ≤ 2 · γ(G�H) (Clark and Suen, 2000). The
conjecture has been also veri�ed for some graph classes.

In the talk we present some recent results related to this topic.
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A NOTE ON k-CORDIAL p-UNIFORM HYPERTREES

Sylwia Cichacz and Agnieszka Görlich

AGH University of Science and Technology
Al. Mickiewicza 30, 30�059 Kraków, Poland

For a p-uniform hypergraphH = (V,E) and a k-labeling c : V → Zk let vc(i) =
|c−1(i)|. The coloring c is said to be k-friendly if |vc(i) − vc(j)| ≤ 1 for any
i 6= j; i, j ∈ Zk. The coloring c induces an edge labeling c∗ : E → Zk de�ned
by c∗(ej) =

∑
xi∈ej c(xi) mod k. Let ec∗(i) = |c∗−1(i)|. A hypergraph is said

to be k-cordial if it admits such k-friendly coloring c that |ec∗(i)− ec∗(j)| ≤ 1
for any i 6= j; i, j ∈ Zk. Then we say that the edge coloring c∗ is k-cordial.

We show that any p-uniform hypertree T is k-cordial for k ∈ {2, p− 1, p}.
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INFORMATION-THEORETIC CHARACTERIZATION
OF GRAPHS

Matthias Dehmer

Institute for Bioinformatics and Translational Research
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Eduard Wallnoefer Zentrum 1, A-6060 Hall in Tyrol, Austria

1. Topic and Results

To characterize graphs by using graph measures is an interesting problem in
graph theory [3]. This can be done either by using simple graph measures
and also by applying statistical and information-theoretic techniques [6]. In
particular, a graph can be characterized using Shannon's entropy [1, 2, 4, 5].
Starting from a recently developed approach to determine the structural infor-
mation content of an unweighted graph based on using information functionals
[2], we present a possible extension to weighted graphs. Moreover, we show
some further developments of the method including graph entropy measure
which are based on graph decompositions.
Keywords: Graphs, Graph Characterization, Entropy, Information Theory.
AMS Subject Classi�cation: 05C99.
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ON THE PLANARITY AND OUTERPLANARITY
OF ITERATED GRAPHS

Magda Dettlaff and Dorota Kuziak
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The middle index of a graph G is the smallest k such that k-th iterated mid-
dle graph of G is non-planar. Similarly we de�ne total, line-block, middle-
block, outer-line, outer-middle, outer-total indices. In this paper we present
characterizations of all graphs with respect to their middle, total, line-block,
middle-block, outer-line, outer-middle and outer-total index.

Keywords: planarity, outerplanarity, line graph, middle graph, total graph.
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ON THE FIBONACCI NUMBER OF CONNECTED
CYCLE-SEPARATED GRAPHS

Ardeshir Dolati

Department of Mathematics, Shahed University
Tehran, PO Box: 18151-159, Iran

e-mail: dolati@shahed.ac.ir

Let G be a graph. The total number of its independent sets is called the Fi-
bonacci number or the Merri�eld-Simmons index of the graph and it is denoted
by i(G). A connected cycle-separated graph is a connected graph which has no
two cycles with a common vertex. If G is a connected cycle-separated graph
and the parameters n and m denote the number of its vertices and the number
of its edges, respectively, then the number of cycles of G is m−n+ 1. We call
a connected cycle-separated graph with r cycles a connected cycle-separated
graph of kind r. Obviously, r ≤ 2n − 5. Therefore, trees are the connected
cycle-separated graphs of kind 0. For connected cycle-separated graph of kind
0, Pn (the path graph of length n) and Sn (the star tree) have the smallest
and the largest Fibonacci number, respectively [8, 7, 9, 6]. For connected
cycle-separated graphs of kind 1 in [2, 5] the graphs with the smallest and the
largest Fibonacci number have been characterized. The graphs with the small-
est and largest Fibonacci number among the connected cycle-separated graphs
of kind 2 have been characterized in [1, 3]. In this paper we investigate some
increasing and decreasing transformations for Fibonacci number of connected
cycle-separated graphs of arbitrary kind and then we characterize the extremal
connected cycle-separated graphs with respect to the Fibonacci number.

Keywords: independent set, Fibonacci number of a graph, Merri�eld-Simmons
index, cycle-separated graph.
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ALTITUDE OF r-PARTITE AND COMPLETE GRAPHS

Tomasz Dzido and Hanna Furma«czyk
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80�952 Gda«sk, Poland

e-mail: {tdz,hanna}@inf.univ.gda.pl

An edge-ordering of a graph G = (V ;E) is a one-to-one function f : E(G) →
{1, 2, . . . , |E(G)|}. A path of length k inG is called a (k, f)-ascent if f increases
along the successive edges forming the path. The altitude α(G) of G is the
greatest integer k such that for all edgeorderings f , G has a (k, f)-ascent.

In our paper we give exact values or bounds of α(G) for some r-partite
graphs. These results imply new bounds on α(Kn).

AMS Subject Classi�cation: 05C78, 05C15, 05C38.
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ON PLANAR TOEPLITZ GRAPHS

Reinhardt Euler

University of Brest, France

and

Tudor Zamfirescu

University of Dortmund, Germany

An undirected graph G = (V,E) is called Toeplitz, if its adjacency matrix A
is a Toeplitz matrix, i.e., a 0 − 1 matrix whose entries are identical along the
diagonals. A Toeplitz graph is therefore completely de�ned by the �rst row of
A, a 0−1 sequence. We present conditions on that sequence to de�ne a planar
Toeplitz graph, and study the chromatic number of these graphs. Finally, we
adress the problem of counting maximal independent sets in planar Toeplitz
graphs.
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VERTEX-ANTIMAGIC LABELINGS OF REGULAR
GRAPHS

Andrea Fe¬ov£íková

joint work with Ali Ahmad, Kashif Ali, Martin Ba£a and Petr Ková°

Let G = (V,E) be a �nite, simple and undirected graph with p vertices and q
edges. An (a, d)-vertex-antimagic total labeling is a bijection f from V (G) ∪
E(G) into the set of consecutive integers 1, 2, . . . , p+ q, such that the vertex-
weights form an arithmetic progression with the initial term a and the common
di�erence d, where the vertex-weight of x is the sum of values f(xy) assigned
to all edges xy incident to vertex x together with the value assigned to x itself,
i.e. f(x). Such a labeling is called super if the smallest possible labels appear
on the vertices.

In this talk, we study the properties of such labelings and examine their
existence for 2r-regular graphs for the values of di�erence d = 0, 1, . . . , r + 1.

Keywords: super vertex-antimagic total labeling, vertex-antimagic edge la-
beling, regular graph.
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Q-RAMSEY CLASSES OF GRAPHS

Mieczysªaw Borowiecki and Anna Fiedorowicz

University of Zielona Góra, Poland

Suppose Q is a hereditary graph property and assume Q ⊆ O2, where O2

denotes the class of bipartite graphs. We de�ne a (Q, k)-colouring of a graph G
as a mapping f : V (G)→ C, where C = {1, . . . , k} is a set of colours, satisfying
the condition that for every two distinct colours i and j, the subgraph induced
in G by all the edges linking a vertex coloured with i and a vertex coloured
with j belongs to Q.

If we additionally assume that for every colour i the set of vertices coloured
with i is independent, then these (Q, k)-colourings are a natural generalization
of acyclic colourings if Q is the class of acyclic graphs, star-forest colourings if
Q is the class of star-forests, and so on.

Let P be a graph property and assume k ≥ 2. We say that P is a (Q, k)-
Ramsey class, if for every G ∈ P there exists H ∈ P such that for every
(Q, k)-colouring of H there is a colour i such that G ⊆ H[Vi], where Vi is the
set of vertices coloured with i.

The notion of (Q, 2)-Ramsey classes of graphs was introduced in [2], as a
generalization of vertex-Ramsey classes of graphs, see [4] for a survey.

In this talk we concentrate on (Q, k)-Ramsey classes of graphs and we also
mentioned some related problems.

Keywords: Q-colouring, Q-Ramsey class.
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BOUNDS ON THE SIZE OF IDENTIFYING CODES
FOR GRAPHS OF MAXIMUM DEGREE ∆∗

Florent Foucaud1, Ralf Klasing1

Adrian Kosowski1,2 and André Raspaud1
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33405 Talence cedex, France
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Identifying codes in graphs are related to the classical notion of dominating
sets and its locating variant [SR84]. They have a property which allows unique
identi�cation of all vertices of the graph. Identifying codes were �rst introduced
in 1998 [KCL98], and have since been studied widely in the communities of
both graph theory and coding theory.

Formally, given an undirected simple graph G = (V,E), an identifying
code is a subset C ⊆ V such that C is a dominating set of G, and for every
pair of vertices {u, v} ∈ V there exists x ∈ C which dominates exactly one of
the vertices of the pair {u, v}.

In this talk we discuss the relationship between the maximum degree ∆
of a graph and the lower and upper bounds for the minimum cardinality of
an identifying code in this graph. Such considerations are an extension of the
known upper bound [GM07] of n − 1 on the size of the identifying code of
an identi�able graph on n vertices. Speci�cally, we show that any identi�able
triangle-free graph G has an identifying code of cardinality at most n− n

3∆+3 ,
and of cardinality at most n− n

2∆+2 if it is ∆-regular. We also present related
bounds for graphs of girth at least 5.

References

[GM07] S. Gravier and J. Moncel. On graphs having a V \ {x} set as an
identifying code. Discrete Mathematics, 307(3-5) 432�434, 2007.

[KCL98] M.G. Karpovsky, K. Chakrabarty, and L.B. Levitin. On a new class
of codes for identifying vertices in graphs. IEEE Transactions on In-
formation Theory, 44 599�611, 1998.

[SR84] P.J. Slater and D.F. Rall. On location-domination numbers for certain
classes of graphs. Congressus Numerantium, 45 97�106, 1984.

∗The research was partially funded by the ANR project �IDEA� and by the KBN Grant
4 T11C 047 25.



abstracts 31

TRACEABILITY OF ORIENTED GRAPHS

Susan van Aardt and Mariethie Frick

University of South Africa

Jean Dunbar
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Morten Nielsen and Ortrud Oellermann

University of Winnipeg, Canada

Peter Katreni£
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A digraph is k-traceable if each of its subdigraphs of order k is traceable. All 2-
traceable oriented graphs are traceable, since they are tournaments. We extend
this result by showing that all k-traceable oriented graphs are traceable, for
k = 2, 3, 4, 5, 6. However, for all k ≥ 7, except possibly for k = 8, 10, there
exist k-traceable oriented graphs that are nontraceable.

Keywords: Oriented graphs, traceable.
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KERNELS BY MONOCHROMATIC PATHS AND THE
CLASS COLOR DIGRAPH

H. Galeana-Sánchez

An m-coloured digraph is a digraph whose edges are coloured with m-colors.
A directed path is monochromatic when its arcs are coloured alike.

A set S ⊆ V (D) is a kernel by monochromatic paths whenever the two
following conditions hold.

(1) For any x, y ∈ S, x 6= y there is no monochromatic directed path
between them.

(2) For each z ∈ V (D)−S there exists a zS-monochromatic directed path.
In this talk is introduced the concept of class color digraph to prove that if D
is an m-coloured digraph such that: (i) Every closed directed walk has an even
number of changes of color. (ii) Every directed path starting and ending with
the same color has an even number of changes of color. Then D has a kernel
by monochromatic paths.

This result generalizes widely a classical result by Sands, Sawer andWoodrow
which asserts that any 2-coloured digraph has a kernel by monochromatic
paths.

Keywords: Kernel; kernel by monochromatic path; the class color digraph.
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ON MONOCHROMATIC PATHS AND
QUASI-TRANSITIVE SUBDIGRAPHS IN

ARC-COLOURED DIGRAPHS

H. Galeana-Sánchez1, R. Rojas-Monroy2 and G. Gaytán-Gómez1

1Universidad Nacional Autónoma de México, México
2Universidad Autónoma del Estado de México,México

Let D be a digraph, V (D) and A(D) will denote the set of vertices and arcs
of D, respectively. We call the digraph D an m-coloured digraph if the arcs
of D are coloured with m colours. A directed path (or a directed cycle) is
called monochromatic if all of its arcs are coloured alike. Now, let D be an
m-coloured digraph. A set N ⊆ V (D) is said to be a kernel by monochromatic
directed paths of D if it satis�es the following two conditions: (i) for every pair
of di�erent vertices u, v ∈ N there is no monochromatic directed path in D
between them and; (ii) for every vertex x ∈ V (D)−N there is a vertex y ∈ N
such that there is an xy-monochromatic directed path in D.

A digraph is transitive whenever (u, v) ∈ A(D) and (v, w) ∈ A(D) implies
(u,w) ∈ A(D) or (w, u) ∈ A(D). If u ∈ V (D) we denote by A+(u) the set of
arcs {(u, v) ∈ A(D) | v ∈ V (D) and we say that A+(u) is monochromatic if
all of its elements have the same color.

Let D be a m−coloured digraph such that there exist two spanning subdi-
graph of D,D1 and D2 such that: F (D1) ∩ F (D2) = ∅, F (D1) ∪ F (D2) =
F (D) and colors(D1)∩colors(D2) = ∅. C = (u0, . . . , uk = v0, . . . , vm =
w0, . . . , wn = u0) will be called a (D1, D,D2) subdivisions of C3 3−coloured
if T1 = (u0, . . . , uk) is a monochromatic directed path of color a and is con-
tained in D1, T2 = (v0, . . . , vm) is a monochromatic directed path of color b
and is contained in D, and T3 = (w0, . . . , wn) is a monochromatic directed
path of color c and is contained in D2 with a 6= b, b 6= c, and a 6= c. And
P = (u0, . . . , uk = v0, . . . , vm = w0, . . . , wn) will be called a (D1, D,D2) sub-
divisions of P3 3−coloured if T1 = (u0, . . . , uk) is a monochromatic directed
path of color a and is contained in D1, T2 = (v0, . . . , vm) is a monochromatic
directed path of color b and is contained in D, and T3 = (w0, . . . , wn) is a
monochromatic directed path of color c and is contained in D2 with a 6= b,
b 6= c, and a 6= c.

In this work it is proved that if D is a m−coloured digraph such that
there exists two spanning subdigraphs D1 and D2 of the digraph D satis-
�ed the following conditions: F (D1) ∩ F (D2) = ∅, F (D1) ∪ F (D2) = F (D),
colors(D1) ∩ colors(D2) = ∅; Di be an m-coloured quasi-transitive digraph
such that for every u ∈ V (Di), A+(u) is monochromatic, and Di has no C3

3-coloured for i ∈ {1, 2}; D does not contain (D1, D,D2) subdivisions of C3

3−coloured and if (u, v, w, x) is a (D1, D,D2) subdivision of P3 3−coloured
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then there exists a monochromatic directed path in D between u and x. Then
D has a kernel by monochromatic directed paths.

Keywords: m-coloured digraph, quasi-transitive digrahs, kernel by monochro-
matic paths.
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Jørgen Bang-Jensen introduced the arc-locally semicomplete digraphs as a
common generalization of semicomplete and bipartite semicomplete digraphs
in [1]. A digraph D is arc-locally semicomplete if and only if whenever x and y
are distinct vertices and there exists an arc u → v in D such that x → u and
y → v in D, there is at least one arc between x and y in D and whenever x
and y are distinct vertices and there exists an arc u→ v in D such that u→ x
and v → y in D, there is at least one arc between x and y in D. The previous
de�nition has an interesting equivalence, when the digraphs are strong, wich
is formulated in terms of independent sets of vertices:

Proposition 1. A digraph D is strong arc-locally semicomplete if and only if
for all independent vertex set S of D, both N−(S) and N+(S) are independent.

In [2], Bang-Jensen claimed that the only strong arc-locally semicomplete di-
graphs are the extensions of cycles, the semicomplete digraphs and the bipartite
semicomplete digraphs. But one family of strong arc-locally semicomplete di-
graphs is missing. Let C∗3 be the digraph with vertex set {v1, v2, v3} and arc
set {v1v2, v2v3, v3v1, v1v3}. It is easy to check that C∗3 [E1, En, E1] is a family
of strong arc-locally semicomplete digraphs, with the composition of digraphs
as de�ned in [3] and where Ei denotes the independent set of i ≥ 1 vertices.

In this talk, we correct and extend the chacterization of Bang-Jensen to
all arc-locally semicomplete digraphs.

Keywords: Arc-local tournament; Arc-locally semicomplete digraph, Gener-
alization of tournaments; Independent set of vertices; Product of digraphs.
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TURÁN NUMBERS FOR DISJOINT COPIES OF GRAPHS

Izolda Gorgol Department of Applied Mathematics

Lublin University of Technology
Nadbystrzycka 38D, 20�618 Lublin, Poland

e-mail: i.gorgol@pollub.pl

The Turán number ex(n,H) of H is the maximum number of edges of an n-
vertex simple graph having no member of H as a subgraph. We show lower
and upper bounds for Turán numbers for disjoint copies of graphs. We also
conjecture that the lower bound is sharp for disjoint paths P3 and prove the
conjecture in case of two and three P3s.

Keywords: Turán number, extremal graph, disjoint copies.
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ON PACKABLE DIGRAPHS

Agnieszka Görlich and Andrzej �ak

University of Science and Technology AGH
Al. Mickiewicza 30, 30�059 Kraków, Poland

One of the classical results in packing theory states that every graph of order n
and size less than or equal to n−2 is packable in its complement [1]. Moreover,
the bound is sharp because the star is not packable. A similar problem arises for
digraphs, namely, to �nd the maximal number fD(n) such that every digraph
of order n and size less than or equal to fD(n) is packable. So far it is known
that 7

4n− 81 ≤ fD(n) ≤ 2n− 4 where the upper bound is sharp [3]. We show
that fD(n) ≥ 2n− o(n).

Keywords: packing, digraph.
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ABOUT OF THE STRUCTURE OF KERNEL PERFECT
AND CRITICAL KERNEL-IMPERFECT DIGRAPHS

Camino Balbuena∗

Mucuy-kak Guevara†

Universitat Politècnica de Catalunya, Barcelona, Spain
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Hortensia Galeana-Sánchez
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e-mail: hgaleana@matem.unam.mx

A kernel of a directed graph is a set of vertices which is both independent and
absorbent. A digraph is called critical kernel-imperfect if it has no kernel but
every proper induced subdigraph has at least one. Berge and Duchet [Recent
problems and results about kernels in directed graphs. Discrete Math. 86:27�
31, 1990] proved that a critical kernel-imperfect digraph is strongly connected.
In this work, CKI-digraphs are also proved to be 2-edge connected under cer-
tain requirements. Moreover, it is shown that by removing two vertices from
a CKI-digraph on at least 5 vertices, the resulting digraph is not a transitive
tournament. Su�cient conditions on the digraph are also given in order to
guarantee that a digraph is kernel perfect.

Keywords: Kernel, kernel-perfect, critical kernel-imperfect, connectivity.
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LOWER BOUNDS ON THE INDEPENDENCE NUMBER
IN TERMS OF ORDER AND SIZE

Jochen Harant, Christopher Hartleb, Christian Löwenstein

Dieter Rautenbach and Friedrich Regen

Technische Universität Ilmenau, Germany

New lower bounds on the independence number of a graph in terms of or-
der, size, and clique number are presented. Their algorithmic realization is
discussed.
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DOMINATION-TYPE PARAMETERS IN CUBIC GRAPHS

Michael A. Henning

University of KwaZulu-Natal, South Africa

In this talk we present various results on domination-type parameters in cubic
graphs.



abstracts 43

k-KERNELS IN GENERALIZATIONS OF TOURNAMENTS

Hortensia Galeana-Sánchez and César Hernández-Cruz

Universidad Nacional Autónoma de México
Ciudad Universitaria, México

Let D be a digraph with arc set A(D) and vertex set V (D). A set S ⊆ V (D)
is said to be k-independent if for every u, v ∈ S, dD(u, v) ≥ k; S is said to be
l-absorbent if for every u ∈ V (D) \ S exists v ∈ S such that dD(u, v) ≤ l. A
set N ⊆ V (D) is called a (k, l)-kernel if it is k-independent and l-absorbent.
A (k, k − 1)-kernel is a k-kernel; k-semikernels are de�ned analogously. Since
a kernel is a 2-kernel, k-kernels are generalizations of kernels. Inspired in a
classic result due to Neumann-Lara [11], we introduce new su�cient conditions
for certain families of digraphs to have a k-kernel using the fact that they have
non-empty k-semikernel. Generalizations of tournaments studied are: local in,
local out, arc local in, arc local out, left pretransitive, right pretransitive, k-
transitive and quasi-transitive digraphs. It's proved that every quasi-transitive
digraph has a k-kernel for k ≥ 3. All results remain valid for in�nite digraphs,
but in quasi-transitive digraphs we must ask for an additional condition, the
digraph must not contain in�nite outward paths.

Keywords: kernel, k-kernel, (k, l)-kernel, quasi-transitive, generalized tour-
naments.
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THE B-CHROMATIC NUMBER OF CUBIC GRAPHS

Marko Jakovac
Faculty of Natural Sciences and Mathematics

University of Maribor
Koro²ka 160, 2000 Maribor, Slovenia

e-mail: marko.jakovac@uni-mb.si

Sandi Klavºar

Faculty of Mathematics and Physics
University of Ljubljana

Jadranska 19, 1000 Ljubljana, Slovenia

e-mail: sandi.klavzar@fmf.uni-lj.si

The b-chromatic number of a graph G is the largest integer k such that G
admits a proper k-coloring in which every color class contains at least one
vertex adjacent to some vertex in all the other color classes. It is proved
that with four exceptions, the b-chromatic number of cubic graphs is 4. The
exceptions are the Petersen graph, K3,3, the prism over K3, and one more
sporadic example on 10 vertices.

Keywords: b-chromatic number; cubic graph; Petersen graph.
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GENERALISATION OF TURAN'S THEOREM

Andrzej Jastrz¦bski

Gdansk University of Technology

There can be many generalisations of Turan's theorem and Turan's graphs. In
this article we will present one of them. We are going to tell about extremal
graphs which don't contain any of Ka1∪Ka2∪ . . .∪Kak as a subgraph. We will
generalise de�nition of Turan's number and also give values of the generalised
Turan's numbers.
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PARITY VERTEX COLOURING OF GRAPHS

Piotr Borowiecki

Department of Algorithms and System Modeling
Faculty of Electronics, Telecommunications and Informatics

Gda«sk University of Technology
Narutowicza 11/12, 80-233 Gda«sk, Poland

Stanislav Jendro©

Kristína Budajová and Stanislav Kraj£i

Institute of Mathematics
P.J. �afárik University

Jesenná 5, 04001 Ko²ice, SLOVAKIA

e-mail: stanislav.jendrol@upjs.sk

A parity path in a vertex colouring of a graph is a path along which each colour
is used an even number of times. Let χp(G) be the least number of colours in
a vertex colouring of G having no parity path. It is proved that for any graph
G there is

χ(G) ≤ χp(G) ≤ |V (G)| − α(G) + 1

where χ(G) and α(G) is the chromatic number and the independence number
of G, respectively. The bounds are tight. This result is improved for trees.
Namely, if T is a tree with diameter diam(T ) and radius rad(T ), then⌈

log2

(
2 + diam(T )

)⌉
≤ χp(T ) ≤ 1 + rad(T ) .

The bounds are tight.
We will discuss a relation between the parity vertex cpolouring and the

vertex ranking of graphs
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GLOBAL SECURE SETS IN COGRAPHS

Katarzyna Jesse-Józefczyk

Faculty of Mathematics Computer Science and Econometrics
University of Zielona Góra

prof. Z. Szafrana 4a, 65�516 Zielona Góra, Poland

e-mail: K.Jesse-Jozefczyk@wmie.uz.zgora.pl

Let G = (V,E) be a graph. A global secure set SD ⊆ V is a dominating
set which satis�es an additional condition which says that |N [X] ∩ SD| ≥
|N [X] − SD| for every subset X ⊆ SD. We present some results concerning
global secure sets in cographs. Furthermore we will investigate whether, for
a given graph G, from the existence of the global secure set of cardinality k
(k ≤ |V (G)| − 1) follows the existence of the global secure set of cardinality
k + 1.

Keywords: graph, alliance, secure set, dominating set, cograph, cotree.
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GLOBAL SECURE SETS IN COGRAPHS

Konstanty Junosza-Szaniawski and Michaª Tuczy«ski

University of Technology
pl. Politechniki 1, 100-661 Warsaw, Poland

Dahllï¿½f, Jonsson and Wahlstrï¿½m gave an algorithm that counts the num-
ber of all independent sets in a graph on n vertices with maximum degree
3 in time O∗(1.18..n). Their algorithm was improved by Fï¿½rer and Ka-
siviswanathan. Improved algorithm has time complexity O∗(1.15..n). We use
combined methods of Dahllï¿½f and others with divide and conquer strategy to
claw-free graphs. As a result we obtain an algorithm which counts all indepen-
dent sets of a claw-free graph with maximal degree three in time O∗(1.12..n).

Keywords: indepentent sets, counting, algorithms.
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d-STRONG EDGE COLORINGS OF GRAPHS

Arnfried Kemnitz∗ and Massimiliano Marangio

Computational Mathematics, Techn. Univ. Braunschweig
Pockelsstr. 14, 38 106 Braunschweig, Germany

e-mail: a.kemnitz@tu-bs.de

If c : E → {1, 2, . . . , k} is a proper edge coloring of a graph G = (V,E)
then the palette S(v) of a vertex v ∈ V is the set of colors of the incident
edges: S(v) = {c(e) : e = vw ∈ E}. An edge coloring c distinguishes vertices
u and v if S(u) 6= S(v). A d-strong edge coloring of G is a proper edge
coloring that distinguishes all pairs of vertices u and v with distance d(u, v) ≤
d. The minimum number of colors of a d-strong edge coloring is called d-strong
chromatic index χ′d(G) of G.

We prove some general bounds for χ′d(G), determine χ′d(G) completely for
paths and give exact values for cycles disproving a general conjecture of Zhang
et al. [3].

Keywords: edge colorings, strong chromatic index.
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THERE ARE AT LEAST 660 UNIVERSAL ONE-SIXTHS
OF K17

Anna K¦dzior and Zdzisªaw Skupie«

Faculty of Applied Mathematics, AGH Kraków, Poland

We consider an edge-decomposition of a complete n-vertex graph Kn into t,
t = 6, isomorphic parts so that a possible edge-remainder R is as small as
possible. Namely, |R| =

(
n
2

)
mod 6. The general conjecture [3] says that for

any t and any n there exists a graph F such that, for each edge-remainder R
of the smallest possible size, the graph Kn − R is edge-decomposable into t
copies of F . Such a graph F is called a universal tth part of Kn. Recently we
have proved the conjecture in case t = 6. We consider the case of K17 (with
t = 6, n = 17 and |R| = 4) to show that the number of universal parts can be
multiplied.

Keywords: minimum remainder, edge-decomposition, sixth part, decomposi-
tion matrix.
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ON CARTESIAN PRODUCTS OF CYCLES AND THEIR
CROSSING NUMBERS

Marián Kle²£

Technical University, Ko²ice, Slovak Republic

The crossing number cr(G) of a simple graph G = (V,E) is de�ned as the
minimum number of crossings among all possible projections of G on the plane.
Computing the crossing number of a given graph is in general an elusive prob-
lem. Garey and Johnson [2] have proved that this problem is NP�complete.
According to their structure, Cartesian products of special graphs are one of
few graph classes for which the exact values of crossing numbers were ob-
tained. Let Cn be the cycle on n vertices. In 1973, Harary, Kainen, and
Schwenk [4] established the crossing number of C3 × C3 and conjectured that
cr(Cm × Cn) = m(n − 2) for 3 ≤ m ≤ n. Recently has been proved by
Glebsky and Salazar [3] that for any �xed m ≥ 3, the conjecture holds for all
n ≥ m(m+ 1).

The crossing numbers of the Cartesian products of cycles and all graphs
of order four are determined in [1, 5]. The table in [6] shows the summary of
known crossing numbers for Cartesian products of cycles and connected graphs
of order �ve. We extend these results and we give the crossing numbers for the
Cartesian products of the cycle Cn with the speci�c graphs on six vertices.
Keywords: graph, drawing, Cartesian product, crossing number, cycle.
AMS Subject Classi�cation: 05C10.
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DOMINATION IN A DIGRAPH AND IN ITS REVERSE

Martin Knor

Slovak University of Technology, Bratislava, Slovakia

and

Ludovit Niepel

Kuwait University, Kuwait

Let D be a digraph. By γ(D) we denote the domination number of D and by
D− we denote a digraph obtained by reversing all the arcs of D. In [1] the
authors prove
Theorem A: If D is a digraph of order n ≥ 2 with no isolated vertices, then

2 ≤ γ(D) + γ(D−) ≤ 4n

3
,

and both the bounds are sharp.

While Theorem A bounds the sum of γ(D) and γ(D−), we study their di�er-
ence. The greatest di�erence γ(D−)−γ(D) is n−2 as is shown by orientation
of K1,n−1 if we direct all the arcs from the center. The problem is that this
digraph is not strongly connected and its total domination number is ∞. We
show that the di�erence γ(D−)−γ(D) cannot be bounded by a constant, even
if we restrict to strongly connected regular digraphs. We prove that for every
δ ≥ 3 and k ≥ 1 there exists a simple strongly connected δ-regular digraph
Dδ,k such that γ(D−δ,k)− γ(Dδ,k) = k. Analogous theorem is obtained for total
domination number provided that δ ≥ 4.

Keywords: domination number, total domination number, directed graph,
reverse digraph, converse.
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SOME RESULTS FOR THE WEAKLY CONVEX AND
CONVEX DOMINATION NUMBERS OF A GRAPH

Magdalena Lema«ska and Joanna Raczek

Gdansk University of Technology, Poland

For a connected graph G = (V,E) with |V | = n, the neighbourhood of a vertex
v ∈ V in G is the set NG(v) of all vertices adjacent to v in G. For a set
X ⊆ V, the open neighbourhood NG(X) is de�ned to be

⋃
v∈X NG(v) and the

closed neighbourhood NG[X] = NG(X) ∪X. A set D ⊆ V is a dominating set
of G if NG[D] = V . The distance dG(u, v) between two vertices u and v in a
connected graph G is the length of the shortest (u−v) path in G. A (u−v) path
of length dG(u, v) is called (u− v)-geodesic. A set X is convex in G if vertices
from all (a − b)-geodesic belong to X for every two vertices a, b ∈ X. A set
X ⊆ V is a convex dominating set if X is convex and dominating. The convex
domination number γcon(G) of a graph G is the minimum cardinality of a
convex dominating set in G. Here we consider the Nordhaus-Gaddum results
for the weakly convex domination number of a graph. Weakly convex and
convex domination numbers of a cartesian product of some classes of graphs is
also considered. We also investigate the in�uence of deleting an edge and an
edge subdivision on the convex domination number.

Keywords: weakly convex domination number, convex domination num-
ber, Nordhaus-Gaddum results, edge subdivision, deleting an edge, cartesian
product.
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THE DICHROMATIC NUMBER AND THE ACYCLIC
DISCONNECTION IN TOURNAMENTS

Bernardo Llano and Mika Olsen

Universidad Autónoma Metropolitana, Mexico

We disprove the following conjecture due to Víctor Neumann-Lara: for every
couple of integers (r, s) such that r ≥ s ≥ 2 there is an in�nite set of circulant
tournaments T such that the dichromatic number and the acyclic disconnection
of T are equal to r and s respectively. We show that for every integer s ≥ 4
there exists a lower bound b(s) for the dichromatic number r such that Fr,s = ∅
(F̃r,s = ∅ resp.) for every r < b(s). We construct an in�nite set of circulant
tournaments T such that dc(T ) = b(s) and −→ω 3(T ) = s (−→ω (T ) = s resp.) and
give an upper bound B(s) for the dichromatic number r such that for every
r ≥ B(s) there exists an in�nite set Fr,s (F̃r,s resp.) of circulant tournaments.
Some in�nite sets Fr,s (F̃r,s resp.) of circulant tournaments are given for
b(s) < r < B(s).

Keywords: Circulant tournament, dichromatic number, acyclic disconnec-
tion.
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PARTITIONING A GRAPH INTO A DOMINATING SET,
A TOTAL DOMINATING SET, AND SOMETHING ELSE

1Michael A. Henning∗, 2Christian Löwenstein

and 2Dieter Rautenbach
1School of Mathematical Sciences
University of KwaZulu-Natal

Pietermaritzburg, 3209 South Africa

e-mail: henning@ukzn.ac.za

2Institut für Mathematik
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e-mails: {christian.loewenstein, dieter.rautenbach}@tu-ilmenau.de

A recent result of Henning and Southey (A note on graphs with disjoint dom-
inating and total dominating set, Ars Comb. 89 (2008), 159-162) implies that
every connected graph G of minimum degree at least 3 has a dominating set
D and a total dominating set T which are disjoint. We show that the Petersen
graph is the only such graph for which D ∪ T necessarily contains all vertices
of the graph G.

Keywords: Domination; total domination; domatic number; vertex partition;
Petersen graph.

AMS Subject Classi�cation: 05C69.
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ON DOUBLY LIGHT GRAPHS

Tomá² Madaras, Veronika Kozáková and Peter Hudák

P.J. �afárik University, Ko²ice, Slovakia

A graph H is doubly light (weakly doubly light) in a family H of plane graphs if
there exist �nite numbers a, b such that each graph G ∈ H which contains as a
subgraph a copy of H, contains also a subgraph K ∼= H such that degG(x) ≤ a
for each vertex x of K, and degG(α) ≤ b for each face of G incident with a
vertex of K (incident with an edge of K, respectively). We present an overview
of results on doubly and weakly doubly light graphs; in particular, we show
that selected small graphs (K1,K2, short paths and cycles) are doubly or
weakly doubly light if the corresponding family H is determined by conditions
of prescribed minimum vertex/face degree or minimum edge/dual edge weight.

Keywords: plane graph, light graph, con�guration.
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INTERVAL INCIDENCE GRAPH COLORING

Robert Janczewski, Anna Maªafiejska and Michaª Maªafiejski

Gda«sk University of Technology, Poland

For a given simple graph G = (V,E), we de�ne an incidence as a pair (v, e),
where vertex v ∈ V (G) is one of the ends of edge e ∈ E(G) (we say v is incident
with e). Let us de�ne a set of incidences I(G) = {(v, e) : v ∈ V (G) ∧ e ∈
E(G)∧v ∈ e}. We say that two incidences (v, e) and (w, f) are adjacent if one
of the following holds: (i) v = w, e 6= f , (ii) e = f , v 6= w, (iii) e = {v, w},
f = {w, u} and v 6= u. By an incidence coloring of G we mean a function
c : I(G) → N such that c((v, e)) 6= c((w, f)) for any adjacent incidences (v, e)
and (w, f).

A �nite subset A of N is an interval if and only if it contains all numbers
between minA and maxA, |A| = maxA − minA + 1. For a given incidence
coloring c of graph G let Ac(v) = {c((v, e)) : v ∈ e∧e ∈ E(G)}. By an interval
incidence coloring of graph G we mean an incidence coloring c of G such that
for each vertex v ∈ V (G) set Ac(v) is an interval.

In this talk we consider a new model of incidence coloring of graphs and
survey its general properties including lower and upper bounds on the number
of colors. We present some polynomial-time algorithms for selected classes
of graphs (e.g. bounded degree, bipartite). We are interested in determining
computationally easy and hard instances.

Keywords: interval coloring, incidence coloring, star arboricity.
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LEVEL HYPERGRAPHS

Hortensia Galeana-Sánchez and Martín Manrique

Given a hypergraph H = (E1, ..., Em), its level-hypergraph LH is the result
of identifying all vertices which belong to exactly the same edges. This new
hypergraph has the same edge-structure as the original one, but may have less
vertices. The tool makes it possible to emulate known theorems given in terms
of order or rank; the new results are stated in terms of edge-structure, and
usually apply to di�erent classes of hypergraphs than the original statements,
though there are some improvements on known results.

On the other hand, the study of several characteristics of a given hyper-
graph H is simpli�ed, since many hypergraph invariants are preserved. For
example: H is simple if, and only if, LH is simple; H has repeated edges
if, and only if, LH does too; ν(H) = ν(LH), where ν(H) is the maximum
cardinality of a matching in H; the minimum cardinality of a transversal set,
the maximum cardinality of a transversal set not contained properly in other
transversal, and the minimum cardinality of a strongly stable set are also equal
in both H and LH . Moreover, H is balanced (respectively totally balanced) if,
and only if, LH is balanced (respectively totally balanced); H is unimodular
(respectively strongly unimodular) if, and only if, LH is unimodular (respec-
tively strongly unimodular), and ∆(H) = ∆(LH), δ(H) = δ(LH).

Keywords: hypergraph, balanced hypergraph, transversal set.
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GENERALIZED CIRCULAR COLOURING OF GRAPHS

Peter Mihók

Faculty of Economics
Technical University of Ko²ice

Slovak Republic

joint work with Janka ORAVCOVÁ and Roman SOTÁK

Let P be an additive and hereditary property of graphs and r, s ∈ N, r >
s. A circular (P, r, s)-colouring of a graph G is an assignment f : V (G) →
[0, r − 1], such that edges of G, consisting of vertices u, v ∈ V (G), for which
|f(u) − f(v)| < s or |f(u) − f(v)| > r − s, induce a subgraph of a graph G
with the propery P. In this talk we present some basic results on circular
(P, r, s)-colourings. We introduce the circular P-chromatic number of a graph
and we determine the circular (P)-chromatic number of complete graphs for
additive and hereditary properties.
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LINEAR TIME ALGORITHM FOR FINDING LONG
CYCLES IN STRONGLY CONNECTED 3-UNIFORM

HYPERGRAPHS

Zbigniew Lonc and Paweª Naroski
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Warsaw University of Technology

Pl. Politechniki 1, 00�661 Warszawa

e-mail: zblonc@mini.pw.edu.pl

e-mail: p.naroski@mini.pw.edu.pl

By a cycle of length k in a hypergraph H we mean an alternating sequence
(v0, e1, v1, e2, v2, ..., vk−1, ek, vk) of vertices and edges of this hypergraph sat-
isfying the following conditions: (i) ei = ej ⇒ i = j for i, j = 1, ..., k; (ii)
{vi−1, vi} ⊆ ei for i = 1, ..., k; (iii) vi−1 6= vi for i = 1, ..., k; (iv) v0 = vk. We
consider cycles containing all edges of a hypergraph (long cycles).

Problems of this kind arise in computer graphics and geographic informa-
tion systems.

We proved earlier that a strongly connected hypergraph H = (V,E) has a
long cycle i�

∑
v∈V bd(v)/2c > |E|. In this talk we give a linear time algorithm

for �nding such a cycle in a 3-uniform hypergraph satisfying this condition.
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CONDUCTORS AND THE FROBENIUS VECTOR IN THE
SYLVESTER-FROBENIUS CHANGE PROBLEM

Mateusz Nikodem1

(joint work with Zdzisªaw Skupie«2)
1,2Faculty of Applied Mathematics

AGH University of Science and Technology
al. Mickiewicza 30-059 Kraków, Poland

e-mail: nikodem@agh.edu.pl, skupien@agh.edu.pl

Let A be a set of n-dimensional integral vectors generating the lattice Zn. Let
C = C(A) be the cone generated by A. A vector v is called A-reachable, if
v is a nonnegative integral linear combination of elements of A. A minimal,
with respect to cone ordering, integral vector h (g) such that every integral
vector in C + h (the interior of C + g) is reachable is called a conductor (a
modular Frobenius vector). Detailed treatment of the case |A| ≤ n + 1 will
be presented, including relations between reachable and non-reachable vectors
and formulas for the vectors g and (where possible) h. Some extencions of the
problem will be also discussed.
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A NOTE ON STAR PRODUCT OF GRAPHS AND
GENERALIZED VOLTAGE ASSIGNMENTS

Marian Olejar, Jr.

Slovak Technical University, Bratislava, Slovakia

Graph coverings, viewed through the optics of ordinary and permutation volt-
age assignments and associated lifts, have been successfully used in a number of
recent constructions of large graphs and digraphs of given degree and diameter.
In our contribution we review a few basic facts on ordinary and permutation
voltage assignments and lifts with regard to the degree-diameter problem. We
also suggest a new type of assignments that generalize ordinary voltages but
are still a subclass of permutation voltages. We relate this new type of assign-
ments to known constructions, in particular to the star product of graphs.
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CARTESIAN DIMENSION OF A GRAPH

Iztok Peterin

University of Maribor, FEECS
Smetanova 17, 2000 Maribor, Slovenia

e-mail: iztok.peterin@uni-mb.si

As suggested recently by G. Sabiddussi (personal communication) the natural
Cartesian dimension of a graph G is the smallest natural number k with the
property that there exist an induced embedding of G into a Cartesian prod-
uct of k-paths Pn1�Pn2� . . .�Pnk

in contrast to lattice dimension (isometric
embedding) and ordinary embedding (with no additional conditions). We will
present some edge coloring conditions for a graph G that force such an em-
bedding. This method is a specialization of some previous result of induced
embedding in general Cartesian product graphs, see [1]. Also some exact re-
sults will be presented.

Keywords: induced subgraph; edge coloring; Cartesian product.
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INTERVAL EDGE COLORINGS OF SOME PRODUCTS
OF GRAPHS

P.A. Petrosyana,b

aInstitute for Informatics and Automation Problems
National Academy of Sciences of Armenia

bDepartment of Informatics and Applied Mathematics
Yerevan State University

An edge coloring of a graph G with colors 1, 2, . . . , t is called an interval
t−coloring [1] if at least one edge of G is colored by i, i = 1, 2, . . . , t, the
colors of edges incident to each vertex of G are distinct and form an interval
of integers. Let N be the set of all interval colorable graphs. In [2] Giaro
showed that if G,H ∈ N then the Cartesian product of these graphs belongs
to N. In the same paper he formulated a similar problem for the lexicographic
product as an open problem. In this work we �rst show that if G ∈ N then
G[nK1] ∈ N for any n ∈ N . Further, we show that if G,H ∈ N and H is a
regular graph then G[H] ∈ N. We also prove that tensor and strong tensor
products of graphs G,H belong to N if G ∈ N and H is a regular graph.

Keywords: edge coloring, interval coloring, products of graphs.

AMS Subject Classi�cation: 05C15.
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COLORING CHIP CONFIGURATIONS ON GRAPHS
AND DIGRAPHS

Mieczysªaw Borowiecki
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Let D be a simple directed graph. Suppose that each edge of D is assigned
with some number of chips. For a vertex v of D, let q+(v) and q−(v) be
the total number of chips lying on the arcs outgoing form v and incoming to
v, respectively. Let q(v) = q+(v) − q−(v). We prove that there is always a
chip arrangement, with one or two chips per edge, such that q(v) is a proper
coloring of D. We also show that every undirected graph G can be oriented
so that adjacent vertices have di�erent balanced degrees (or even di�erent in-
degrees). The arguments are based on peculiar chip shifting operation which
provides e�cient algorithms for obtaining the desired chip con�gurations. We
also investigate modular versions of these problems. We prove that every k-
colorable digraph has a coloring chip con�guration modulo k or k + 1.

Keywords: combinatorial problems, graph algorithms, graph coloring.
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DOMINATION IN UNICYCLIC GRAPHS

Joanna Raczek

Department of Applied Physics and Mathematics
Gdansk University of Technology
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e-mail: gardenia@pg.gda.pl

Let G = (V,E) be a graph without an isolated vertex. A set D ⊆ V (G) is a
dominating set if each element of V (G) − D is adjacent to a vertex of D. A
set D ⊆ V (G) is a total dominating set if D is dominating and the induced
subgraph G[D] does not contain an isolated vertex. The total domination
number of G is the minimum cardinality of a total dominating set of G. A set
D ⊆ V (G) is a total outer-connected dominating set if D is total dominating
and the induced subgraph G[V (G)−D] is a connected graph. The total outer-
connected domination number of G is the minimum cardinality of a total outer-
connected dominating set of G. We study total domination and total outer-
connected domination in unicyclic graphs.

Keywords: total domination number, total outer�connected domination num-
ber, unicyclic graphs.
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RECENT WORK ON VIZING'S CONJECTURE

Douglas F. Rall

Furman University

The intriguing conjecture of Vizing concerning the domination number, γ, on
the Cartesian product is that for every pair of graphs G and H, γ(G�H) ≥
γ(G)γ(H). In this talk we shall survey the main results on this conjecture
including the recent result of Bre²ar and Rall that generalizes both the early
theorem of Barcalkin and German on decomposable graphs and that of Aharoni
and Szabó on chordal graphs.

Keywords: Cartesian product, decomposable graph, 2-packing, Vizing's con-
jecture.
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STAR COLORING OF GRAPHS

Andre Raspaud

Universite Bordeaux 1, Talence, France

A proper coloring of the vertices of a graph is called a star coloring if the
union of every two color classes induces a star forest. If G has a proper k-star
coloring, then G is said to be k-star colorable. The star chromatic number
χs(G) is the least integer k such that G has a k-star coloring. In this talk we
will give a brief survey of known results concerning the star chromatic number
of graphs and we will focus on some recent ones.
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ON THE RELATIONS BETWEEN LIARS' DOMINATING
AND SET-SIZED DOMINATING PARAMETERS

Miranda L. Roden-Bowie

Department of Mathematics and Computer Science
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and
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University of Alabama in Huntsville
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Assume that each vertex of a graph G is the possible location for an �intruder"
such as a thief, a saboteur, a �re in a facility or some possible processor fault in
a multiprocessor network. Here a detection device at a vertex v is assumed to
be able to detect the intruder situated at any vertex in its closed neighborhood
N [v] and to identify at which vertex in N [v] the intruder is located. Indeed, the
detection device can pinpoint the location(s) of however many intruders there
are in N [v]. The reliability problem considered here involves the situation in
which a device in the neighborhood of an intruder vertex can misidentify (lie
about) location(s) of the intruder(s). We de�ne the (i, j)-liars' domination
number of G, denoted by γLR(i,j)(G), to be the minimum cardinality of a set
L ⊆ V (G) such that detection devices placed at the vertices in L can precisely
determine the set of intruder locations when there are between 1 and i intruders
and at most j detection devices that are lying.

We also de�ne the X(c1, c2, . . . , ct, . . .)-domination number, denoted by
γ
x(c1,c2,...,ct,...)(G), to be the minimum cardinality of a set D ⊆ V (G) such that
, if S ⊆ V (G) with |S| = k, then |(∪s∈SN [s]) ∩D| ≥ ck. Thus, D dominates
each set of k vertices at least ck times making γ

x(c1,c2,...,ct,...)(G) a set-sized
dominating parameter. We consider the relations between these set-sized dom-
inating parameters and the liars' dominating parameters. Previously we have
shown that γ(G) ≤ γLR(1,1)(G) = γ

x(2,3)(G) ≤ γ×3(G). However, we have also
shown that γLR(2,2)(G) is not identical to any set-sized domination parameter.
In this paper we characterize all values of i and j for which γLR(i,j)(G) is equal
to some γ

x(c1,c2,...,ct,...)(G) parameter.

Keywords: liars' domination, set-sized domination, fault-tolerant reporting.
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GAME CHROMATIC NUMBER OF GRAPHS WITH
LOCALLY BOUNDED NUMBER OF CYCLES

�ukasz Ro»ej and Konstanty Junosza-Szaniawski

Warsaw University of Technology, Poland

In a coloring game Alice and Bob take turns coloring a vertex of a graph with
one of k colors. Alice makes the �rst move. Alice wins when all the vertices
get colored. Bob wins if he can prevent it. Game chromatic number of graph
G is the smallest k such that in a coloring game on graph G with k colors Alice
has a winning strategy.

In a marking game Alice and Bob take turns marking a vertex of a graph
with Alice making the �rst move. The score of the game is the smallest k
such that any unmarked vertex has less then k marked neighbours during
the game. Game coloring number of graph G is the smallest k such that
Alice has a strategy guaranteeing a score of k. It can easily be shown that
χg(G) ≤ colg(G).

We prove that a graph with every edge belonging to at most c cycles has
game coloring number of at most c+ 4. This generalises recent result [1] that
for any cactus G (a graph with edge-disjoint cycles) colg(G) ≤ 5.

Keywords: game chromatic number, game coloring number.
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RAINBOW CONNECTION IN GRAPHS WITH MINIMUM
DEGREE THREE

Ingo Schiermeyer
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An edge-coloured graph G is rainbow connected if any two vertices are con-
nected by a path whose edges have distinct colours. This concept of rainbow
connection in graphs was recently introduced by Chartrand et al. in [2]. The
rainbow connection number of a connected graph G, denoted rc(G), is the
smallest number of colours that are needed in order to make G rainbow con-
nected. In this talk we will show that rc(G) < 3n

4 for graphs with minimum
degree three, which was conjectured by Caro et al. in [1].

We will also report about the status of this problem for graphs with min-
imum degree at least four.

Keywords: Rainbow colouring, rainbow connectivity, extremal problem.
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ON THE CROSSING NUMBERS OF JOIN OF PATHS AND
CYCLES WITH OTHER GRAPHS

Marián Kle²£ and �tefan Schrötter

Technical University, Ko²ice, Slovak Republic

The crossing number cr(G) of a graph G is the minimum possible number
of edge crossings in a drawing of G in the plane. The investigation of crossing
numbers of graphs is a classical and however very di�cult problem. The exact
values for crossing numbers are known only for few speci�c families of graphs.

It has been long�conjectured by Zarankiewicz [3] that the crossing num-
ber of the complete bipartite graph Km,n equals bm−1

2 cb
m
2 cb

n−1
2 cb

n
2 c. This

conjecture has been veri�ed by Kleitman [1] for min{m,n} ≤ 6. Let G and H
be two disjoint graphs. The join product of G and H, denoted by G + H, is
obtained from vertex�disjoint copies of G and H by adding all possible edges
between V (G) and V (H). For |V (G)| = m and |V (H)| = n, the edge set of
G+H is the union of disjoint edge sets of the graphs G, H, and the complete
bipartite graph Km,n.

In [2] there are established crossing numbers for join of two paths, join
of two cycles, and for join of path and cycle. We extend these results and
we collect the crossing numbers for join products of paths and cycles with all
graphs of order four.

Keywords: graph, join product, drawing, crossing number, path, cycle.
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DISTANCE INDEPENDENCE IN GRAPHS

J. Louis Sewell and Peter J. Slater

University of Alabama in Huntsville

For a set D of positive integers, we de�ne a vertex set S ⊆ V (G) to be D-
independent if u, v ∈ S implies the distance d(u, v) /∈ D. The D-independence
number βD(G) is the maximum cardinality of a D-independence set. In par-
ticular, the independence number β(G) = β{1}(G). Here we present results
about this general parameter and its relations to other distance parameters.

Keywords: independence number, domination number, distance set.
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INDEPENDENT SETS MEETING ALL LONGEST PATHS

Susan avn Aardt, Marietjie Frick and Joy Singleton

Department of Mathematical Sciences
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Laborde, Payan and Xuong [1] conjectured that every digraph has an indepen-
dent set of vertices that meets every longest path. We consider the conjecture
for special classes of oriented graphs.

Keywords: Oriented graphs, longest paths, independent sets.
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STRUCTURE OF GRAPHS WITH NUMEROUS
DOMINATING SETS

Zdzisªaw Skupie«
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e-mail: skupien@agh.edu.pl

E�ciently dominating, minimally dominating or all dominating sets are dealt
with. The structure of some graphs with extremal numbers of such sets is the
subject of the talk.

AMS Subject Classi�cation: 05C69, 05C05, 05C35, 05C75, 05A15.
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COMPLEMENTARITY AND DUALITY OF
GENERALIZED GRAPHICAL SUBSET PROBLEMS

Peter J. Slater

Mathematical Sciences Department and Computer Science Department
University of Alabama in Huntsville

Huntsville, AL 35899, USA

Gallai's Theorem states that the minimum cardinality of a cover, denoted
α(G), and the maximum cardinality of an independent set, denoted β(G),
satisfy α(G)+β(G) = |V (G)|. There are many other such set-complementation
theorems involving set minimization and set maximization parameters. For
example, the domination and enclaveless parameters satisfy γ(G) + Ψ(G) =
|V (G)|. Extensions from subset problems involving f : V (G) → {0, 1} or
f : E(G)→ {0, 1} to generalized parameters that are Y-valued for an arbitrary
subset Y of the reals produce more general complementation theorems. The
Matrix Complementation Theorem will be presented.

Likewise, graph theoretic minimization (respectively, maximization) prob-
lems expressed as linear programming problems have dual maximization (re-
spectively, minimization) problems. The LP-duality Theorem relates the val-
ues of these parameters. Again, one can generalize to an arbitrary set Y of
reals. A particular case with Y = {0, 1} is that domination and packing are
dual problems.

The relations among parameters arising by (successively) taking duals and
complements will be examined.

Keywords: dominating, enclaveless, packing, independent, covering, edge
cover.

AMS Subject Classi�cation: 05C69, 05C15.
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LARGE VERTEX-TRANSITIVE AND CAYLEY
DIGRAPHS WITH GIVEN DEGREE AND DIAMETER

�ubica Staneková and Mária �dímalová

Slovak University of Technology, Bratislava, Slovakia

The degree-diameter problem is the problem of �nding largest possible graphs
and digraphs of given degree and diameter. Usually, symmetric graphs and
digraphs are in the center of interest. The motivation for studying large
vertex-transitive (and Cayley) digraphs with given degree and diameter comes
from potential applications in symmetric interconnection networks. One of the
known constructions of large vertex-transitive digraphs is due to Faber, Moore
and Chen [1,2].

In our contribution we determine the automorphism group of the so called
Faber-Moore-Chen digraphs and we establish necessary and su�cient condi-
tions for a Faber-Moore-Chen digraph to be a Cayley digraph.

Keywords: digraph, degree-diameter problem, Cayley digraph.
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COUNTING MAXIMAL INDEPENDENT SETS IN
GRAPHS WITH MAXIMUM DEGREE 3

Konstanty Junosza-Szaniawski and Michaª Tuczy«ski

University of Technology
pl. Politechniki 1, 00-661 Warsaw, Poland

Moon and Moser proved that the number of maximal independent sets in
a graph on n vertices is bounded by 3n/3. There are some algorithms that
generate all maximal independent sets with time proportional to their number.
Dahllï¿½f, Jonsson and Wahlstrï¿½m gave an algorithm that counts the number
of all independent sets (not necessary maximal) in time O∗(1.25n), what is
faster than generating.

We give an algorithm which counts all maximal independent sets of a graph
with maximal degree three in time O∗(1.26 . . .n).

Keywords: maximal indepentent sets, counting, algorithms.

AMS Subject Clssi�cation: primary 05C85, secondary 05C69.
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NEW TYPES OF PROBLEMS ON HYPERGRAPH
COLORING

Zsolt Tuza

Hungarian Academy of Sciences, Budapest
and University of Pannonia, Veszprém

Let H = (V, E) be a hypergraph with vertex set V and edge set E ; that
is, E is a set system over V . Our general approach to vertex coloring is to
de�ne four functions s, t, a, b : E → N, with 1 ≤ s(E) ≤ t(E) ≤ |E| and
1 ≤ a(E) ≤ b(E) ≤ |E| for all E ∈ E , with the following meaning. A coloring
ϕ : V → N is considered to be proper if, for all E ∈ E ,

• there are at least s(E) distinct colors on E,

• there are at most t(E) distinct colors on E,

• some color occurs at least a(E) times on E,

• every color occurs at most b(E) times on E.

A structure with all these conditions is called a stably bounded hypergraph; and
if only s and t can be restrictive functions, then it is called a color-bounded
hypergraph.

A subclass of very high importance is that of mixed hypergraph, in which
each edge E is required to contain two vertices with a common color (C-edge,
corresponding to s(E) = 1, t(E) = |E| − 1, a(E) = 2, b(E) = |E|) or two
vertices with distinct colors (D-edge, with s(E) = 2, t(E) = |E|, a(E) = 1,
b(E) = |E| − 1), or both, i.e. a monochromatic pair and also a 2-colored pair
has to occur in it (bi-edge, with s(E) = a(E) = 2, t(E) = b(E) = |E| − 1).

The classical theory of (hyper)graph coloring assumes that no monochro-
matic edges occur; this means a (hyper)graph with D-edges only. The other
side, when completely multicolored edges are forbidden, is called C-coloring or
C-hypergraph (depending on context). This simple and natural condition also
leads to very interesting questions.
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ON FULKERSON CONJECTURE

J.L. Fouquet and J.M. Vanherpe

L.I.F.O., Faculté des Sciences, B.P. 6759
Université d'Orléans, 45067 Orléans Cedex 2, FR

IfG is a bridgeless cubic graph, Fulkerson conjectured that we can �nd 6 perfect
matchings (a Fulkerson covering) with the property that every edge of G is
contained in exactly two of them. A consequence of the Fulkerson conjecture
would be that every bridgeless cubic graph has 3 perfect matchings with empty
intersection (this problem is known as the Fan Raspaud Conjecture). A FR-
triple is a set of 3 such perfect matchings. We show here how to derive a
Fulkerson covering from two FR-triples.

Moreover, we give a simple proof that the Fulkerson conjecture holds true
for some classes of well known snarks.

Keywords: Cubic graph; Perfect Matchings.
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LIST COLORINGS OF GRAPHS

Margit Voigt

University of Applied Sciences, Dresden

Let G be a simple graph. A list assignment L of G is a function that assigns
to every vertex v of G a set (list) L(v) of colors. We say that G is L-colorable
if the vertices of G can be properly colored (i.e. adjacent vertices receive
distinct colors) so that each vertex is colored by a color from its list. The
list assignment L is called a k-assignment if |L(v)| = k for all v ∈ V . The
graph G is k-list colorable if it is L-colorable for every k-assignment L. The
list chromatic number χ`(G) is the minimum integer k such that G is k-list
colorable.

The talk summarizes some results and open problems in this very rich �eld
of research including the following topics.

1. Minimal k-list critical graphs
A graph G is L-critical for a given list assignment L if every proper subgraph
of G is L-colorable, but G itself is not L-colorable. G is called k-list critical
if there is a (k-1)-assignment L such that G is L-critical. If G is k-list critical
and G does not contains a k-list critical graph as a proper subgraph then G
is minimal k-list critical. Note that a graph G is minimal k-list critical if and
only if χ`(H) < χ`(G) = k for every proper subgraph H of G.

2. Precoloring extension
Let G = (V,E) be a graph and L a list assignment with special properties, e.g.
|L(v)| = ∆(G) ∀v ∈ V or |L(v)| = 4 ∀v ∈ V if G is outerplanar. Moreover let
W ⊆ V be a subset of V such that G[W ] is s-colorable and assume that each
component of G[W ] is properly precolored by s colors. Denote the shortest
distance between components of G[W ] by d(W ). We are interested in bounds
for d(W ) such that any such precoloring extends to an L-coloring of V ?

3. List colorings for special list assignments
We look for questions like the following asked by Joan Hutchinson and Carsten
Thomassen, respectively.

Let G be a planar, 3-connected graph which is not a complete graph. Is
there an integer k such that G is L-colorable for every list assignment L with
|L(v)| = min{d(v), k} for all v ∈ V ?
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GENERALIZED PELL NUMBERS AND THEIR GRAPH
REPRESENTATIONS

Iwona Wªoch and Andrzej Wªoch

Faculty of Mathematics and Applied Physics
Rzeszow University of Technology, Poland

e-mail: e-mail:iwloch.prz.edu.pl, awloch.prz.edu.pl

Let k be a �xed integer, k ≥ 2. A subset S ⊂ V (G) is a k-independent set of
G if for each two distinct vertices x, y ∈ S, dG(x, y) ≥ k.

We propose a generalization of the Fibonacci numbers, the Lucas numbers,
the Pell numbers, the Pell-Lucas numbers, the Tribonacci numbers and next we
give their graph representations with respect to the number of k-independent
sets in special graphs.
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CYCLIC PARTITIONS OF COMPLETE UNIFORM
HYPERGRAPHS

A. Paweª Wojda

AGH University of Science and Technology, Cracow Pl

(joint work with Artur Szyma«ski)

By K(k)
n we denote the complete k-uniform hypergraph of order n, 1 ≤ k ≤

n − 1, i.e. the hypergraph with the set Vn = {1, 2, ..., n} of vertices and the
set

(
Vn
k

)
of edges. If there exists a permutation σ of the set Vn such that

{E, σ(E), ..., σp−1(E)} is a partition of the set
(
Vn
k

)
then we call it p-cyclic

partition of K(k)
n and σ a permutation of p-cyclic partition of K(k)

n . If p = 2
we have σ(E) =

(
Vn
2

)
−E and the hypergraph (Vn;E), and (Vn;σ(E)) as well,

is self-complementary k-uniform hypergraph.
We shall give several necessary and su�cient conditions for a permutation

to be a permutation of p-cyclic partition of K(k)
n .

It is true that that if
(
n
k

)
is even then there is a k-uniform self-complementary

hypergraph of order n. The corresponding result is no longer true for p-cyclic
partitions of K(k)

n , that is there are such p, k and n that
(
n
k

)
is divisible by

p, but there is no p-cyclic partition of K(k)
n . We shell discuss the problem for

which p, k and n there is a p-cyclic partition of K(k)
n ? The problem of p-cyclic

partitions of the complete hypergraph (Vn; 2Vn−{Vn, ∅}) will be also discussed
and solved.
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THE EDGE SPAN OF GRAPH DISTANCE LABELING

Ji-Wei Huang and Roger K. Yeh

Deptartment of Applied Mathematics
Feng Chia University
Taichung, Taiwan

e-mail: rkyeh@math.fcu.edu.tw

The distance labeling (or coloring) of a graph is an assignment of numbers
(or labels) to the vertices with conditions depend on the distance between
vertices. This class of graph labeling is motivated by the frequency assignment
problem.There are considerable e�orts on this labeling since it was introduced
in 1992.

Given a graph G = (V,E) and nonnegative integers k1 ≥ k2 ≥ k3, an
L(k1, k2, k3)-labeling of G is an assignment f : V → {0, 1, . . . } such that
|f(u) − f(v)| ≥ ki whenever the distance between u and v is i in G, for
i = 1, 2, 3. The tuple (k1, k2, k3) is called the constraint of the labeling. The
L(k1, k2, k3)-span is the smallest number m such that there is an L(k1, k2, k3)-
labeling with the maximum value m. If k3 = 0 then the constraint is denoted
by (k1, k2) for short. In the previous study, people are interested in �nding
L(k1, k2)-spans with various k1 and k2. Given an L(k1, k2, k3)-labeling f of a
graph G, the edge span of f is de�ned by max{|f(u)−f(v)| : uv ∈ E(G)}. The
L(k1, k2, k3)-edge span of G is the minimum edge span over all L(k1, k2, k3)-
labelings of G and is denoted by β(G; k1, k2, k3).

In a communication network, large service areas are often covered by a
network of congruent polygonal cells with each station or transmitter at the
center of cell that it covers. There are only three regular tilings (regular cell
coverings ) can cover the whole plane, which are square tiling, hexagonal tiling
and triangular tiling. Correspondingly, we have the square lattice, the trian-
gular lattice and the hexagonal lattice.

Since our labeling problem was motivated by the channel assignment prob-
lem of a communication network,this talk will present recent results on edge
spans with constraints (k1, k2, k3) for these three classes of graphs.

Keywords: graph coloring, distance.

AMS Subject Classi�cation: 05C78.
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ON GEODETIC SETS OF A GRAPH∗

Sergio Bermudo1, Juan A. Rodríguez-Velázquez2

José M. Sigarreta3 and Ismael G. Yero2

1Pablo de Olavide University, Spain

e-mail: sbernav@upo.es

2Rovira i Virgili University, Spain

e-mail: ismael.gonzalez@urv.cat

e-mail: juanalberto.rodriguez@urv.cat

3Autonomous University of Guerrero, México

e-mail: josemariasigarretaalmira@hotmail.com

In a graph Γ = (V,E), a u−v-geodesic between the vertices u, v ∈ V is formed
by the vertices u, v and the all vertices lying in a path of minimum length
between these two vertices. A subset of vertices S ⊂ V is a geodetic set [1, 2],
if every vertex of the graph lies on some geodesic between two vertices u, v ∈ S.
The geodetic number of the graph is the minimum cardinality of any geodetic
set and it is denoted by g(Γ).

A subset S ⊂ V is a k-geodetic set [3], if all the vertices in the graph lies
on some geodesic of length k between two vertices u, v ∈ S. The minimum
cardinality of any k-geodetic set is called the k-geodetic number of the graph
and it is denoted by gk(Γ). Also, the subset S ⊂ V is a total k-geodetic set if
every vertex v of the graph lies in a u1 − u2-geodesic of length k between two
vertices u1, u2 ∈ S, with v 6= u1 and v 6= u2. In this case, the total k-geodetic
number of the graph is the minimum cardinality of any total k-geodetic set
and it is denoted by gtk(Γ).

Here, we study the geodetic and k-geodetic numbers of the cartesian prod-
uct of graphs. For instance we obtain that, for any connected graph Γi of order
ni, i ∈ {1, 2}, g(Γ1×Γ2) ≤ n1+n2−2. Also we present the relationship between
the total k-geodetic number of two graphs Γ1 and Γ2 and the k-geodetic num-
ber of the cartesian product Γ1 × Γ2 of these two graphs, so we have obtained
that gki+k2(Γ1 × Γ2) ≤ gtk1(Γ1)gtk2(Γ2)−min{gtk1(Γ1), gtk2(Γ2)}.

We also study the relationship between dominating sets, independent sets
and geodetic and k-geodetic sets and we obtain some tight bounds for the
geodetic and k-geodetic numbers related to the diameter, the order and the
minimum and maximum degree of the graph.

Keywords: Geodetic sets, dominating sets, cartesian product.
∗This work was partly supported by the Spanish Ministry of Science and Innova-

tion through projects TSI2007-65406-C03-01 �E-AEGIS", CONSOLIDER INGENIO 2010
CSD2007-0004 "ARES".
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FIXED SIMPLEX PROPERTY
FOR RETRACTABLE COMPLEXES

Adam Idzik

Institute of Mathematics
Jan Kochanowski University, Kielce, Poland

Institute of Computer Science
Polish Academy of Science, Warsaw, Poland

and

Anna Zapart

Warsaw University of Technology, Warsaw, Poland

Retractable complexes are de�ned by authors. It is proved that every simplicial
map de�ned on the set of all vertices of a retractable complex into itself has
a �xed simplex. This generalise a well-known Rival-Nowakowski theorem for
trees: every simplicial map transforming vertices of a tree into itself has a �xed
edge [2] and Hell and Ne²et°il theorem: any endomorphism of a dismantible
graph �xes some clique [1].

Keywords: �xed simplex, retractable ≤n- complex, retraction, simplicial
map.

AMS Subject Classi�cation: Primary 05B30, 47H10; Secondary 52A20,
54H25.
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2 AND 3-EXISTENTIALLY CLOSED TOURNAMENTS

Bernardo Llano

Universidad Autónoma Metropolitana

and
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Universidad Nacional Autónoma de México

A tournament T is k−existentially closed (k ≥ 1), if for every subset A ⊆ V (T )
such that | A |= k and every B ⊆ A, there exists x /∈ A such that x dominates
every element of B and every element of A\B dominates x.We will say that a
k−existentially closed tournament T has property Pk. In this talk we present
families of tournaments with property P2 and P3.

Keywords: k−existentially closed tournament, circulant tournamet, Paley
tournament, Szekeres tournament.
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PACKING GRAPHS WITHOUT SHORT CYCLES IN
THEIR COMPLEMENTS

Agnieszka Görlich and Andrzej �ak

AGH University of Science and Technology
Kraków, Poland

The following statement was conjectured by Faudree, Rousseau, Schelp and
Schuster [2].
If a graph G is a non-star graph without cycles of length m ≤ 4 then G is a
subgraph of its complement.

So far the best result concerning this conjecture is that every non-star
graph G without cycles of length m ≤ 6 is a subgraph of its complement. This
was proved by Brandt [1]. Another, relatively short proof of Brandt's result
was given by Görlich, Pil±niak, Wo¹niak and Zioªo [3]. In the talk we will show
that m ≤ 6 can be replaced by m ≤ 5.

Keywords: packing, graph complement, short cycles
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