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ARC-TRANSITIVE CAYLEY GRAPHS ON METACYCLIC
p-GROUPS

MEHDI ALAEIYAN AND MOHSEN GHASEMI

For a group G, and a subset S of G such that 1o ¢ S, let I' = Cay(G, S) be
a Cayley graph. Then T is said to be arc-transitive, if Aut(I") act transitive
on the set of its arcs. In this paper we classify arc-trnsitive Cayley graphs on
metacyclic groups of order p3.

Keywords: Cayley graph, normal Cayley graph, arc-transitive Cayley graph.
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DOMINATION IN GRAPHS AND MULTILINEAR FUNCTIONS

SARAH ARTMANN, FRANK GORING, JOCHEN HARANT
AND DIETER RAUTENBACH

TU Illmenau, Germany

A multilinear function f in n variables is defined and it is proved that the
domination number (G) of a graph G with |V (G)| = n equals the minimum
of f taken over the n-dimensional cube [0,1]”. Discussing this continuous
optimization problem new uper bounds on ~(G) are established.
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AN ALGORITHM FOR GENERATING GRAPHS WITH
A GIVEN CHROMATIC NUMBER

KRysTYNA T. BALINSKA

Technical University of Poznani, Poland

Louis V. QUINTAS
Pace University, New York, USA

AND
KRrzyszTOoF T. ZWIERZYNSKI

Technical University of Poznani, Poland

A simple graph on n vertices with vertex degree bounded by f < n — 2 is
called an f-graph. An edge maximal f-graph is a graph to which no edge can
be added without violating the f-degree restriction [1].

Random edge maximal f-graphs can be generated as outcomes of a process
called the Random f-Graph Process (R fGP) whose states are f-graphs [2]. The
initial state of the R fGP is the empty graph of order n. One step of the process
is adding one edge to an f-graph G and obtaining a new state. The edge to be
added is selected uniformly from the set of all admissible edges, i.e. edges of
the complement of G, which can be added to G without introducing a vertex
of degree greater than f. The process stops when the set of admissible edges
is empty. A terminal state of the RfGP is an edge maximal f-graph.

Chromatic properties of edge maximal f-graphs of order n generated by
the RfGP have been studied using methods of graph theory and algorithms,
both exact and randomized. Conditions for generating graphs with a given
chromatic number are defined.

REFERENCES

[1] J.W. Kennedy and L.V. Quintas, Probability models for random f-graphs, in:
Combinatorial Mathematics (New York, 1985), Ann. N.Y. Acad. Sci. 555 (1989)
248-261.

[2] K.T. Balinska and L.V. Quintas, Random Graphs with Bounded Degree (Publ.
House of Poznan University of Technology, Poznaii, 2006).
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MULTICOLOR RAMSEY NUMBERS FOR SOME GRAPHS

HALINA BIELAK
Institute of Mathematics, UMCS, Lublin, Poland

We give the multicolor Ramsey number for some graphs with a complete graph
or a cycle in the given sequence generalizing a results of Stahl [3], Baskoro et
al. [1] and Dzido [2].

Keywords: complete graph, cycle, forest, G-good graph, Ramsey number,
tree.

AMS Subject Classification: 05C55.
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unions of trees, Discrete Math. 306 (2006) 3297-3301.
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SOME RESULTS IN A CONSENSUS LIST COLOURING

DAMIAN BOGDANOWICZ AND KRZYSZTOF GIARO

Gdarisk University of Technology, Poland

Let S(v) denote a nonempty set of integers assigned to vertex v of graph
G = (V,E). Let call S a list assignment for G. We seek a proper graph
colouring f such that for every vertex v € V we have f(v) € S(v). Such a
colouring is called a list colouring for (G,S). We consider one of consensus
models described in [2] called trading model. In situation when such colouring
can not be obtained in trading model there is a possibility to create new list
assignment S’ based on S. A new assignment S’ is created in a series of steps
called trades. A trade from a vertex u to v means that we remove colour ¢
from S(u) and add it to S(v).

We ask how many trades are required in order to obtain a list assignment
that has a list colouring. We say that (G, S) is p-tradeable if this can be done
in p trades.

We show a polynomial algorithm based on maximum cardinality matching
in bipartite graphs to determine minimal p for given (G,S) where G is a
complete graph. We also prove that determine if (G, S) is p-tradeable for
given p where G is a tree is an NP-complete problem.

Keywords: list colouring, consensus list colouring, trading model.

REFERENCES

[1] M. Dror, G. Finke, S. Gravier and W. Kubiak, On the complezity of a restricted
list-coloring problem, DMATH: Discrete Mathematics 195 (1999) 103-109.

[2] N.V.R. Mahadev and F.S. Roberts, Consensus List Colorings of Graphs and
Physical Mapping of DNA (DIMACS, Technical Report, 2002).
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MATCHING CUTSETS IN GRAPHS OF DIAMETER 2

MIECZYSEAW BOROWIECKI AND KATARZYNA JESSE-JOZEFCZYK

University of Zielona Gdéra, Poland

A matching cutset of a graph G = (V, ) is a set M C F of independent edges
such that G — M has more components than G. Chvatal [1] proved that rec-
ognizing graphs with a matching cutset is NP-complete. Since then the graph
classes for which this problem is polynomial were investigated. Interesting
results were presented by Moshi in [4]. He proved that the matching cutset
problem is solvable in polynomial time when we restrict the input graphs to
line graphs or graphs without induced cycles of lenght > 5. In the same paper
[4] he also proved that the problem remains NP-complete for bipartite graphs
of minimum degree 2.

In this talk we present a polynomial-time algorithim which solves the prob-
lem of recognizing graphs with a matching cutset for graphs of diameter two.
We say that a graph possess a module if there exists a set W C V such that
every vertex outside W is either adjacent to all the vertices of W or to none
of them. The notion of the module plays an important role in our algorithm.

REFERENCES

[1] V. Chvatal, Recognizing decomposable graphs, J. Graph Theory 8 (1984) 51-53.

[2] V.B. Le and B. Randerath, On stable cutsets in line graphs, Theoretical Com-
puter Science 301 (2003) 463-475.

[3] R.M. McConnell and J.P. Spinrad, Modular decomposition and transitive orien-
tation, Discrete Math. 201 (1999) 189-241.

[4] A.M. Moshi, Matching Cutsets in Graphs, J. Graph Theory 13 (1989) 527-536.
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ON THE DECOMPOSITION OF GRAPHS

MIECZYSEAW BOROWIECKI AND ELZBIETA SIDOROWICZ

University of Zielona Gdéra, Poland

We denote by 7 the class of all finite simple graphs. A graph property is a
nonempty isomorphism-closed subclass of Z. A property P is called hereditary
if it is closed under subgraphs.

Let Py, Ps, ..., P, be hereditary properties. A (Py,Pa, ..., P,)-decomposi-
tion of a graph G € 7 is a partition Eq, Fs,...,E, of E(G) such that the
subgraph induced by F; has the property P;, for i = 1,2,...,n. We de-
note by Py & Py @ --- & P, the property {G € Z : G hasa (P1,Pa,...,Px)-
decomposition}. A property P is said to be decomposable if there exist non-
trivial hereditary properties P; and P, such that P = P; & Py. We study the
relations between decomposable properties. We shall deal with the following
hereditary properties:

01 = {G € Z: each component of G has at most two vertices},

Dy ={G €I :G is k-degenerate,

i.e., every subgraph of G has a vertex of degree at most £},
D; = {G € T : G contains at most one cycle}.
We prove that D; & D C O; @ Ds.

REFERENCES

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihok and G. Semanisin, A survey of
hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50.
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of graphs, Discuss. Math. Graph Theory 20 (2000) 281-291.

[3] M. Haluszczak and P. Vateha, On the decomposable properties of graphs, Discuss.
Math. Graph Theory 19 (1999) 199-217.
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ACYCLIC COLOURINGS OF GRAPHS

MIECZYSEAW BOROWIECKI, ANNA FIEDOROWICZ
AND MARIUSZ HALUSZCZAK

University of Zielona Gdéra, Poland

For a given graph G = (V, E) and a sequence Py, Pa, ..., Py of additive hered-
itary properties of graphs we define a (Py,Po,...,Pk)-colouring of G as a
partition (V1,..., V%) of V such that G[V;] € P;, i =1,..., k. Such a colouring
is called acyclic if for every two distinct colours ¢ and j, the subgraph induced
by all the edges linking an i-coloured vertex and a j-coloured vertex does not
contain a cycle.

A property R consisting of all graphs having an acyclic (Py,Pa,. .., P)-
colouring will be called an acyclic reducible property. We consider acyclic
reducible properties which are upper bounds for some classes of graphs in the
lattice of all additive hereditary properties.

Keywords: acyclic colouring, additive hereditary property.
AMS Subject Classification: 05C15.

REFERENCES
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NEW 3-COMPETITIVE ALGORITHM FOR ON-LINE
COLORING OF INTERVAL GRAPHS

P10TR BOROWIECKI

University of Zielona Gdéra, Poland

Within this talk we present algorithm IC (Interval Coloring) - new on-line algo-
rithm for coloring of interval graphs. Algorithm IC achieves the best possible
worst case performance ratio [4] and in average case it compares favourably
with other on-line 3-competitive algorithms given in [4, 5].

REFERENCES

[1] P. Borowiecki, Characterization of Graphs Critical for First-Fit Graph Coloring,
in: 13. Workshop on Discrete Optimization, 27-30 April 1998, Burg.

[2] P. Borowiecki, On-line coloring of graphs, in: M. Kubale ed., Graph Colorings,
Contemporary Mathematics 352, American Mathematical Society, 2004, 21-33.

[3] P. Borowiecki, On-line P-coloring of graphs, Discuss. Math. Graph Theory 26
(2006) 389-401.

[4] H.A. Kierstead, W.T. Trotter, An extremal problem in recursive combinatorics,
Congressus Numerantium 33 (1981) 143-153.

[5] M. Slusarek, A coloring algorithm for interval graphs, Mathematical Foundations
of Computer Science ’89, LNCS 379, Springer, 1989, 471-480.
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ON THE 2-RAINBOW DOMINATION IN GRAPHS

BOSTJAN BRESAR AND TADEJA KRANER SUMENJAK

University of Maribor, Slovenia

The concept of 2-rainbow domination of a graph G coincides with the ordinary
domination of the prism GUOK,. In this talk we show that the problem of
deciding if a graph has a 2-rainbow dominating function of a given weight is
NP-complete even when restricted to bipartite graphs or chordal graphs. Exact
values of 2-rainbow domination numbers of several classes of graphs are found,
and it is shown that for the generalized Petersen graphs GP(n, k) this number
is between [4n /5| and n with both bounds being sharp.

Keywords: complexity, algorithm, NP-completeness, domination, Cartesian
product, generalized Petersen graph.

AMS Subject Classification: 05C85, 05C69.

REFERENCES
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MINIMUM CONNECTED DOMINATING SETS
IN UNIT DISK GRAPHS

KRzYSZTOF BRYS AND BARTOSZ JABLONSKI

Warsaw University of Technology, Warsaw, Poland

A unit disk graph is a graph having points in the Euclidean plane as vertices
and any two vertices are joined by an edge if the distance between them is at
most 1. Finding the minimum connected dominating set in unit disk graphs is
NP-hard problem which plays an important role in efficient routing in ad hoc
wireless networks. Many approximation algorithms (see, for example, |2, 3|)
construct maximal independent set at first step. The relation between the size
mis(G) of a maximum independent set and the size cds(G) of a minimum
connected dominating set in the same graph G is used to determine the per-
formance ratio of such algorithms. It is shown in [1] that in every unit disk
graph G, mis(G) < 3.8 -cds(G) + 1.2. We improve this result by showing that
mis(G) < 3.6 - cds(G) + 1.4.

REFERENCES

[1] W. Wu, H. Du, X. Jia, Y. Li and S.C.-H. Huang, Minimum connected dominating
sets and mazimal independent sets in unit disk graphs, Theoretical Computer
Science 325 (2006).
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dominating set in wireless ad hoc networks, Proc. Infocom’2002.

[3] J. Wu and H.L. Li, On calculating connected dominating set for efficient routing

in ad hoc wireless networks, Proc. Third ACM Internat. Workshop On Discrete
Algorithms and Methods for Mobile Computing and Communications, 1999.
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HAMILTONICITY OF k-TRACEABLE GRAPHS

FRANK BULLOCK, MARIETJIE FRICK, SUSAN VAN AARDT
UNISA, South Africa

PETER DANKELMANN, MICHAEL A. HENNING
University of Kwazulu-Natal, South Africa

AND
ORTRUD OELLERMANN

University of Winnipeg, Canada

A graph is called k-traceable if each of its induced subgraphs of order k is
traceable. It follows easily from Dirac’s degree condition for hamiltonicity
that for k > 2 every k-traceable graph of order n > 2k — 1 is hamiltonian. We
suspect that the bound on n may be reduced considerably. For each k& > 2 we
define H (k) to be the largest integer such that there exists a k-traceable graph
of order H (k) that is nonhamiltonian. We determine the exact value of H (k)
for k < 8 and show that £k +2 < H(k) < %T*E’ for £ > 10.
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STRUCTURAL ANALYSIS OF GRAPHS BY USING
INFORMATION THEORETIC FUNCTIONALS

MATTHIAS DEHMER

Vienna University of Technology, Vienna, Austria

AND
FrRANK EMMERT-STREIB

University of Washington, Seattle, USA

1. ToriCc AND RESULTS

The problem to measure the structural information content of graphs (graph
entropy) has been frequently investigated, see e.g., [1, 3, 4, 5, 7]. Most of these
classical methods to determine graph entropy are based on the problem to find
a partition of the underlying vertex set [4, 5, 7] which can be very difficult for
arbitrary graphs. In contrast to this, we give first a novel definition of graph
entropy by avoiding the problem of determining certain vertex partitions. We
define functionals which are based on metrical and eccentrical graph properties
[6] to define a vertex probability that finally leads us to a graph entropy. Based
on this approach we state some lower and upper bounds for the defined graph
entropy. Additionally, based on a novel graph similarity measure we compare
graphs structurally by using the relative entropy that is also called KULLBACK-
LEIBLER divergence [2].

Keywords: graphs, metrical and eccentrical quantities, entropy, graph simi-
larity.
AMS Subject Classification: 05C99.
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COMPUTING THE NUMBER OF INDEPENDENT SETS
USING FIBONACCI RELATIONS

GUILLERMO DE ITA AND YOLANDA MOYAO

Autonomus University of Puebla, C.U. Puebla, Mezico

Counting the number of independent sets of a graph G, denoted by NI(G),
is a classical #P-complete problem for graphs of degree 3 or higher [1]. We
exploit the relation between NI(G) and the Fibonacci numbers that allow us
to establish new polynomial classes for NI(G) problem.

Such new classes are determined based on the topological structure of the
graph. We show that if the depth-first search over a graph G generates a graph
where the set of fundamental cycles are non-intersected, that is, there are not
common edges between any pairs of fundamental cycles (although they could
share nodes) then, NI(G) is computed in polynomial time, in fact, in linear
time with respect to the length of the input graph G, that is, our proposal has
a time complexity of O(n +m), n and m being the number of nodes and edges
in the graph, respectively. We have called to this class of graphs, the class of
topological ordered graphs.

This new polynomial class is a superclass of graphs of degree 2 and it has
not restrictions over the degree of the graphs, but rather it depends on the
topological structure of the graphs. The class of topological ordered graphs
allows us to establish a finer border between the classes FP and #P for counting
the number of independent sets.

This topological approach allows us to identify a common structure for
all tractable graphs where to count its combinatorial objects, such as count-
ing models in Boolean Formulas, counting colourings of nodes, counting edge
coverings, etc.. they can be computed in polynomial time.

Our algorithm could be adapted for obtaining faster algorithms for count-
ing the number of independent sets for graphs with any degree, i.e. we show a
leading Worst-case upper bound of O(poly(n)*¢™+t1)/2) for computing NI(Q),
where 7 is the number of nodes and ¢ = 1/2(1 + v/5) is the ’golden ratio’.
Keywords: counting the number of independent sets, enumerative combina-
tory.

AMS Subject Classification: 05A06.
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NEW POLYNOMIAL CLASSES FOR COUNTING THE
NUMBER OF 3-COLORINGS OF A GRAPH

GUILLERMO DE ITA, PEDRO BELLO AND VERA ERICA

Universidad Auténoma de Puebla, México

Counting problems in graph theory that can be solved exactly in polynomial
time are few. In this work, we design different efficient algorithms to carry out
the exact counting of the number of 3-colorings for any undirected graph.

The problem #3-Col(G) which counts the number of 3-colorings of a graph
G is a classic #P-complete problem for graphs G of degree 3 or higher [1].
Contrary to this latter result, we establish new polynomial classes of graphs
where to compute #3-Col(G) is done in linear time without restrictions on the
degree of the graph, but rather it depends on the topological structure of the
graph. We show that #3-Col(G) can be computed in linear time if G has the
following topological structure:

1. G is a tree (this case includes when G is a chain graph).

2. G does not have any intersected cycles (this case includes when G is a
simple cycle).

3. If G has a set of intersected cycles, such set can be translated, via a
polynomial time reduction, to a set of embedded cycles with a common
start node.

For all those cases, we have developed linear-time algorithms based on travers-
ing GG in depth-first search. We associate to each node v of the graph an ordered
triple: (ow, By, V) of integer numbers which carries the number of times that
the node v could be colored with the first, second and third color, respectively.
According to the depth-first search when a new node w € V(G) adjacent to
v is visited the first time, we compute the new ordered triple (au,, Buw,Vw) it
base on the values of («, (3,,7,) and according if the edge {v,w} is a back
edge or a tree edge in the depth-first graph.

The exact method showed here could be used to impact directly to speed
up many other algorithms for counting problems, i.e. for counting models
in propositional Boolean formulas, counting the number of independent sets,
counting exact covers, etc.

Keywords: counting colorings of a graph, exact counting, enumerative com-
binatory.

AMS Subject Classification: 05A06.
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ON MONOCHROMATIC PATHS AND BICOLORED
SUBDIGRAPHS IN ARC-COLORED TOURNAMENTS

PIETRA DELGADO-ESCALANTE * AND HORTENSIA GALEANA-SANCHEZ

Universidad Nacional Auténoma de México, Ciudad Universitaria, Mézico

Let D be a digraph. D is said to be an m-colored digraph if the arcs of D are
colored with m colors. A path P in D is called a monochromatic one if all of its
arcs are colored alike. Now, let D be an m-colored digraph. A set N C V(D)
is said to be a kernel by monochromatic paths of D if for every pair of
different vertices u and v in N there is no monochromatic directed path in D
between them and for every vertex € V(D) — N there is a vertex n € N such
that there is a zn-monochromatic directed path in D.

This concept is a generalization of a kernel. We prove new and different
sufficient conditions which imply that arc-colored tournaments have kernel
by monochromatic paths. Our conditions concern to some subdigraphs of
tournaments and their almost monochromatic and bicolor coloration too. We
also prove that our conditions are not mutually implied. At the end some open
problems are proposed.

Keywords: kernel, kernel by monochromatic paths, tournaments.
AMS Subject Classification: 05C20, 05C38, 05C69.
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GENERALIZATIONS OF THE GRAPH RANKING PROBLEM

DARIUSZ DERENIOWSKI
Gdarisk University of Technology, Poland

Given a simple graph G = (V, E), a function ¢ mapping the set of vertices of
G into integers 1,... k is a vertex k-ranking of G if each path connecting two
vertices of the same color contains a vertex with a bigger color. The smallest
number k such that the above function ¢ does exist is called a vertex ranking
number of G and denoted by y,.(G). If we label the edges of the graph instead
of its vertices then the corresponding function c is an edge k-ranking of G and
the smallest number k is called in this case an edge ranking number of G.

In this talk we survey some generalizations and modifications of the above
problems, including some new results. We discuss algorithmic aspects of the
selected graph ranking problems. We are especially interested in determining
computationally easy and hard instances.
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MINIMAL FORBIDDEN SUBGRAPHS OF H-REDUCIBLE
GRAPH PROPERTIES

EwA DRGAS-BURCHARDT

University of Zielona Gdéra, Poland

An additive hereditary property of graphs is any class of simple graphs, which
is closed under union, subgraphs and isomorphisms. By L we denote a class
of all such properties. Let Py1,..., P, € L% and G, H = ({v1,v2,...,v,}, E)
be graphs. An H[Py,...,Py]-partition of G is defined as a (P1, P, ..., Py)-
partition (Vi,...,V,) of G satisfying that the existence of {z;,z;} € E(G)
with x; € V;, x; € V}, i # j implies the existence of {v;,v;} € E.

A symbol H[Py,...,P,| denotes a class of all graphs possessing an
H[Py,...,P,]-partition. Of course H[P,...,P,] € L

For a given graph H, we say that a property P € L% is H-reducible over
L*if P = H[Py,...,Pn], n > 2, P1,...,P, € L” and there exists a graph
G € P such that for each H[P1,...,P,|-partition (V1,...,V,) of G we have
Vi # 0 for i € [n].

We prove that if 6(H) > 1 then the number of minimal forbidden sub-
graphs of H-reducible property P is infinite, which generalize the result of A.
Berger [1]. Moreover, we give many sufficient conditions for infinity of a class
of all minimal forbidden subgraphs of K,-reducible property. Such properties
are joins of non-comparable properties in the lattice (L% C) and they cover
H-reducible properties with §(H) = 0.

Keywords: generalized colourings of graphs, graph-reducibility, minimal for-
bidden subgraphs.
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A SELF-STABILIZING ALGORITHM FOR AN ADJACENT
VERTEX DISTINGUISHING EDGE-COLOURING
OF PLANAR GRAPHS

KAOQUTHER DRIRA, FoUAD TIGRINE AND HAMAMACHE KHEDDOUCI

Université Claude Bernard Lyon 1, Villeurbanne Cedex, France

Graph edge-colouring is an interesting problem. The objective is to assign
colours to edges of the graph such that no two neighbouring edges have the
same colour. An adjacent vertex distinguishing edge-colouring or an AVD-
colouring of a simple graph G is a proper edge-colouring of G such that no
pair of adjacent vertices have the same set of colours |1, 2|. K-AVD-colouring
is an AVD-colouring using at most &£ colours. Let X; be the minimum number
of colours in an AVD-colouring of G. Finding an optimal colouring, using
the least possible number of colours, of an arbitrary graph is a NP-complete
problem. Of particular interest is the class of planar graph that have received
substantial attention so far.

Self-stabilizing colouring problems was investigated in recent years [4, 5].
The concept of self-stabilization, introduced by Dijkstra in 1974 [3], is a dis-
tributed algorithm that can start from any initial (legitimate or illegitimate)
state and guarantees to converge to a legitimate state in a finite time. A self-
stabilizing system will eventually correct itself from transient faults automat-
ically without the need for an outside intervention. Once it is in a legitimate
state, it stays in it for any subsequent fault free execution.

In this paper, we focus on the AVD-colouring problem in a self-stabilizing
system of a planar graph. We want to assign each edge a colour such that for
any pair of adjacent vertices z and y, the set of colours incident to z is not equal
to the set of colours incident to y. The system is said to be in a legitimate state
if and only if it has an AVD-colouring. Furthermore, we assume that there is
a central daemon model. 1t evaluates all the guards, and arbitrarily selects one
privileged node with a true guard to complete its corresponding action. We
employ node labelling concept. In fact, colours are assigned to edges according
to their priorities. The colouring is a (A + 8)-AVD-colouring of G.

Keywords: graph property, additive, induced-hereditary, vertex partitions,
uniquely colourable graphs.

AMS Subject Classification: 05C15, 05C35, O5C75.
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HAMILTONICITY AND TRACEABILITY
OF ORIENTED GRAPHS

JEAN E. DUNBAR
Converse College, USA

MARIETJIE FRICK, SUSAN VAN AARDT
UNISA, South Africa

AND
MORTEN H. NIELSEN AND ORTRUD OELLERMANN

University of Winnipeg, Canada

A (di)graph is called k-traceable if each of its induced sub(di)graphs of order
k is traceable. An n-traceable (di)graph of order n is simply called traceable.
It follows from Dirac’s degree condition for hamiltonicity that for £ > 2 every
k-traceable graph of order at least 2k — 1 is hamiltonian. We show that the
same is true for strong oriented graphs when k = 2,3, 4 but not when k£ > 5.
We consider the following conjecture.

The Traceability Conjecture: For k > 2 every k-traceable oriented
graph of order at least 2k — 1 is traceable.

We prove that the Traceability Conjecture is true for £ < 5 and that for
k > 6 every strong k-traceable oriented graph of order at least 6k — 20 is
traceable.
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ON SOME TURAN AND RAMSEY NUMBERS FOR WHEELS

ToMASZ DzZIDO
University of Gdarisk, Poland

Turdn number T'(n,G) is the maximum number of edges in any n-vertex
graph which does not contain a subgraph isomorphic to G. For given graphs
G1,Ga,...,Gg, k > 2, the multicolor Ramsey number R(G1,Ga,...,Gy) is the
smallest integer n such that if we arbitrarily color the edges of complete graph
on n vertices with k colors, there is always a monochromatic copy of G; colored
with ¢, for some 1 < ¢ < k. Let W}, be the wheel on k vertices. In the paper we
show the exact values and bounds for Turan numbers for wheels. In addition,
we give some values and bounds for Ramsey numbers of different graphs versus
wheels. In this paper we present new other results in this field as well as some
conjectures.

Keywords: edge coloring, Ramsey numbers, Turdn numbers.
AMS Subject Classification: 05C15, 05Cb5.
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EQUITABLE COLORING OF KNESER GRAPHS

ROBERT FIDYTEK AND HANNA FURMANCZYK
University of Gdarisk, Gdarisk, Poland

The Kneser graph K (n, k) is the graph whose vertices correspond to k-element
subsets of set {1,2,...,n}, and two vertices are adjacent if and only if they
represent disjoint subsets.

In 1955, Kneser [1] conjectured that (K (n,k)) >n—2k+2,n > 2k > 2,
where x(G) denotes the chromatic number of a given graph G, which was
verified by Lovasz in 1978 [2].

Theorem 1 ([2|). Let K(n,k) be a Kneser graph and n > 2k > 2. Then
X(K(n,k)) =n — 2k + 2. (1)

In this paper we study the problem of equitable coloring of Kneser graphs,
namely, we establish the equitable chromatic number for K(n,2) and K(n, 3).
In addition, equitable coloring of some reduced Kneser graphs is considered. A
graph G is said to be equitably k-colorable if its vertices can be partitioned into k
classes I, I, ..., I} such that each I; is an independent set and the condition
|#1; — #1;| < 1 holds for every i,j, where #S denotes the cardinality of a
given set S. Such partition Iy, Io,..., I} is called an equitable partition. The
smallest integer k for which G is equitably k-colorable is known as the equitable
chromatic number of G and denoted by x=(G).
Our main results are the following theorems.

Theorem 2. Let K(n,2), n > 4, be a Kneser graph. Then

n—2 if n=4,56,
x=(K(n,2)) = { n—1 otherwise.
Theorem 3. Let K,.(n,2) be an r-reduced Kneser graph and let n > 2r. Then

=n-—r dlaT:27
X=(K;(n,2)) { <n-—r dlare{34}.

Theorem 4. Let K(n,3), n > 6, be a Kneser graph. Then

n—4 if 6<n<13,
X=(K(n,3)) =< n—3 if ne {14,15},
n — 2 otherwise.
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ON NEARLY THIRD PARTS OF A COMPLETE 2-GRAPH

ARTUR FORTUNA
AGH University of Science and Technology, Krakéw, Poland

By a 2-graph we mean a multigraph with an edge multiplicity at most two.
Given an integer ¢ and complete 2-graph 2K, of order n we study packings
of t copies of a multigraph F in 2K,,. We are looking for such an F that the
remainder R of the packing, R C E(*K,), has the smallest possible size |R)|,
|R| = n(n—1) mod t where n(n — 1) is the size of 2K,,. Each such packing is
a decomposition of 2K,, — R into parts isomorphic to . Then F is a tth part
of 2K,, — R, R is called t-remainder in >K,,, and F is called a nearly tth part
of 2K, with remainder R.

=+

" J = {F: F is tth part of 2K, with t-remainder R} .
R

IfFe rK"J n for each remainders R then F is called nearly tth part of 2I,,.

[,

2Kn
t

The question is if the class L J is nonempty?

We are going to present known results, especially for nearly third parts.
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GRAPHS WITH MAXIMAL NUMBER
OF HAMILTONIAN Ek-SETS

ARTUR FORTUNA, ZDZISEAW SKUPIEN AND ANDRZEJ ZAK
AGH University of Science and Technology, Krakéw, Poland

A hamiltonian decomposition of G is a collection of edge-disjoint hamiltonian
cycles whose union is equal to G. The hamiltonian decomposition into k parts
is called a hamiltonian k-set, k > 2.

Let h;(G) be the number of hamiltonian k-sets of G and let hy(n) denote
the maximum of hy(G) if G ranges over all multigraphs of order n. Then
hi(G) = 0 if G is not 2k-valent. We are going to study the largest values of
the function hj. The related problem for £ = 2 of determining the minimal
positive number of hamiltonian pairs has been studied by several authors, see
[1, 3, 4]. In particular, it follows from Thomason’s [4] that ho(G) > 4if G has a
hamiltonian pair. This lower bound is sharp because multigraphs with exactly
four hamiltonian pairs have been found by Skupien [2, 3] for each n > 3.

Our aim is to contribute to the open problem stated in [2] on the corre-
sponding upper bounds. For n > 4, we characterize n-vertex multigraphs with
two largest values of hy, namely with hy € {k!I"~1 kI""1/k}.

Keywords: tree, multigraph, hamiltonian decompositions.
AMS Subject Classification: 05C70, 05C35, 05C38, 05C45.
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ON NORMAL ODD PARTITIONS IN CUBIC GRAPHS

J.L. FOUQUET AND J.M. VANHERPE

Université d’Orléans, France

A normal partition of the edges of a cubic graph is a partition into trails (no
repeated edge) such that each vertex is the end vertex of exactly one trail of
the partition. We give here some results and propose a conjecture related to
perfect matchings in cubic graphs.

[1]

[2]
3]
[4]
[5]
[6]

17
8]
9]

[10]

[11]

[12]

REFERENCES

J.A. Bondy, Basic graph theory: Paths and circuits, in: M. Grétschel R.L. Gra-
ham and L. Lovasz, editors, Handbook of Combinatorics, vol. 1, pages 3-112
(Elsevier, North-Holland, 1995).

J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Elsevier, North-
Holland, 1976).

A. Bouchet and J.L. Fouquet, Trois types de décompositions d’un graphe chaines,
Annals of Discrete Math. 17 (1983) 131-141.

H. Thuillier, D. Delamarre, J.L. Fouquet and B. Virot, Simulated annealing ap-
plied to the hamiltonian problem for cubic graphs, 1993.

G. Fan and A. Raspaud, Fulkerson’s conjecture and circuit covers, J. Comb.
Theory (B) 6 (1994) 133-138.

L. Goddyn, Cones, lattices and Hilbert base of circuits and perfect matching,
in: N. Robertson and P. Seymour, eds, Graph Structure Theory, Contemporary
Mathematics Vol. 147, pages 419-439 (American Mathematical Society, 1993).
J.M. Vanherpe J.L. Fouquet, H. Thuillier and A.P. Wojda, On odd and semi-odd
linear partitions of cubic graphs, preprint, 2006.

D. Koénig, Uber Graphen und ihre Anwendung auf Determinantentheorie und
Mengenlehre, Math. Ann. 77 (1916) 453-465.

A. Kotzig, Moves without forbidden transitions, Mat.-Fyz. Casopis 18 (1968)
76-80. MR, 39#4038.

H. Li, Perfect path double covers in every simple graphs, J. Graph. Theory 14
(1990) 645-650. MR 91h#05052.

G. Reinelt, M. Jiinger and W. Pulleyblank, On partitioning the edges of a graphs
into connected subgraphs, J. Graph Theory 9 (1985) 539-549.

P. Seymour, On multi-colourings of cubic graphs, and conjectures of Fulkerson
and Tutte, Proc. London Math. Soc. 38 (1979) 423-460.



ABSTRACTS 35

ON ODD AND SEMI-ODD LINEAR PARTITIONS
OF CUBIC GRAPHS

J.L. FOUQUET, HENRI THUILLIER, JEAN-MARIE VANHERPE

Université d’Orléans, Orléans Cedex 2, France

AND
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AGH University of Science and Technology, Krakéw, Poland

A linear forestis a graph whose connected components are chordless paths. A
linear partition of a graph G is a partition of its edge set into linear forests and
its linear arboricity, la(G), introduced by Harary [3], is the minimum number
of linear forests in a linear partition.

In this paper we consider linear partitions of cubic simple graphs for which
it is well known [1] that la(G) = 2. A linear partition L = (Lp, Lg) is said to
be odd whenever each path of Ly U Ly has odd length and semi-odd whenever
each path of Lp (or each path of Lg) has odd length.

In [2] Aldred and Wormald showed that a cubic graph G is 3-edge colourable
if and only if G has an odd linear partition. We give here more precise results
and we give as an application some partial results about a conjecture of Fou-
quet (1991) on compatible linear partition. Moreover, we prove that a cubic
graph has a semi-odd linear partition if and only if it has a perfect matching.

Keywords: cubic graph, edge-colouring, linear partition, matching.
AMS Subject Classification: 05C38, 05C15, 05C70.
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DIRECTED HYPERGRAPHS: A TOOL FOR RESAEARCHING
DIGRAPHS AND HYPERGRAPHS

HORTENSIA GALEANA-SANCHEZ AND MARTIN MANRIQUE

Universidad Nacional Auténoma de México, México

In this work we introduce the concept of directed hypergraph. It is a generali-
sation of the concept of digraph and is closely related with hypergraphs. The
basic idea is to take a hypergraph, partition its hyperedges non-trivially (when
possible), and give a total order to such partitions. The elements of these par-
titions are called levels. In order to preserve the structure of the underlying
hypergraph, we ask that only vertices which belong to exactly the same hyper-
edges may be in the same level of any hyperedge they belong to. Some little
adjustments are needed to avoid directed walks within a single hyperedge of
the underlying hypergraph, and to deal with isolated vertices.

The concepts of independent set, absorbent set, and transversal set are
inherited directly from digraphs. Up to now, our efforts have been directed to
the study of transversal kernels (that is, sets which are independent, absorbent,
and transversal) in directed hypergraphs. However, we think that the concept
of a directed hypergraph may be useful for studying other aspects of digraphs
and hypergraphs.

As a consequence of our results on this topic, we have found both a class
of kernel-perfect digraphs with odd cycles and a class of hypergraphs which
have a strongly independent transversal set.
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KERNELS BY MONOCHROMATIC DIRECTED PATHS IN
3-QUASI-TRANSITIVE DIGRAPHS

HORTENSIA GALEANA-SANCHEZ

Universidad Nacional Auténoma de México, México

Rocio ROJAS-MONROY

Universidad Autéonoma del Estado de México, México

AND
BERTA ZAVALA

Universidad Nacional Auténoma de México, México

For general concepts we refer the reader to [1]. Let D be a digraph, V(D) and
A(D) will denote the set of vertices and arcs of D, repectively. We call the
digraph D an m-coloured digraph if the arcs of D are coloured with m colours.
A directed path is called monochromatic if all of its arcs are coloured alike.

Aset I C V(D) is independent if A(D[I]) = ¢. A kernel N of D is an inde-
pendent set of vertices such that for each z € V(D) — N thereis a zN-arcin D.

A set N C V(D) is said to be a kernel by monochromatic paths if for
every pair of different vertices u, v € N, there is no monochromatic directed
path between them and for every vertex x € V(D) — N, there is a vertex
y € N such that there is an xy-monochromatic directed path. The concept
of kernel by monochromatic paths is a generalization to the one of kernel.
The problem of the existence of a kernel by monochromatic paths in a given
m-~coloured digraph has been studied by several authors for example Galeana-
Sanchez |2, 3], Galeana-Sanchez and Garcia-Ruvalcaba [4, 5|, Galeana-Sanchez
and Pastrana [7], Galeana-Sanchez and Rojas-Monroy (8, 9, 10|, S. Minggang
[11] and Sands, Sauer and Woodrow [12]. Almost of these results are concerning
to tournaments or digraphs near to tournaments.

A digraph is transitive whenever (u,v) € A(D) and (v, w) € A(D) implies
(u,w) € A(D). A digraph D is called quasi-transitive when (u,v) € A(D)
and (v,w) € A(D) implies (u,w) € A(D) or (w,u) € A(D). This concept
was introduced by Ghouil4-Houri in 1962 [14] and has been studied by several
authors in particular Bang-Jensen and Huang [1, 2, 3], Huang [15], Skrien [19].
It was proved by Ghouila-Houri [14] that an undirected graph can be oriented
as a quasi-transitive digraph if and only if it can be oriented as a transitive
digraph, namely comparability graph. More information about comparability
graphs can be found in [13, 16].

In this work is introduced the concept of a 3-quasi-transitive digraph and is
given some sufficient conditions for the existence of kernels by monochromatic
paths in such m-coloured digraphs.
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SEMIKERNELS AND KERNELS BY MONOCHROMATIC
DIRECTED PATHS IN EDGE-COLOURED BIPARTITE
TOURNAMENTS

HORTENSIA GALEANA-SANCHEZ

Universidad Nacional Auténoma de México, México

Rocio RoOJAS-MONROY

Universidad Autéonoma del Estado de México, México

AND
BERTA ZAVALA

Universidad Nacional Auténoma de México, México

For general concepts we refer the reader to [1]. Let D be a digraph, V(D) and
A(D) will denote the set of vertices and arcs of D, repectively. We call the
digraph D an m-coloured digraph if the arcs of D are coloured with m colours.
A directed path is called monochromatic if all of its arcs are coloured alike.

A set I C V(D) is independent if A(D[I]) = ¢. A kernel N of D is an
independent set of vertices such that for each z € V(D) — N there is a zN-arc
in D. An important concept in the development of Kernel Theory has been
the one of semikernel that was introduced by V. Neumann-Lara [6]. A set
S C V(D) is a semikernel of D if it is an independent set and if (s,u) € A(D)
with s € S and u € V(D) — S then there is an arc from u to some vertex in S.

A set N C V(D) is said to be a kernel by monochromatic paths if for
every pair of different vertices u, v € N, there is no monochromatic directed
path between them and for every vertex z € V(D) — N, there is a vertex
y € N such that there is an xy-monochromatic directed path. The concept
of kernel by monochromatic paths is a generalization to the one of kernel.
The problem of the existence of a kernel by monochromatic paths in a given
m-~coloured digraph has been studied by several authors for example Galeana-
Sanchez |2, 3], Galeana-Sanchez and Garcia-Ruvalcaba [4, 5|, Galeana-Sanchez
and Pastrana [7], Galeana-Sanchez and Rojas-Monroy (8, 9, 10|, S. Minggang
[11] and Sands, Sauer and Woodrow [12]. Almost of these results are concerning
to tournaments or digraphs near to tournaments.

A digraph D is called a bipartite tournament if its vertices can be parti-
tioned into two sets V7 and V5 such that every arc of D has an endpoint in
V1 and the other endpoint in V5 and for every x1 € V; and every xo € Vh, we
have |{(x1,z2), (x2,21)} N A(D)| = 1. If u € V(D) we denote by A" (u) the
set of arcs {(u,v)/v € V(D)} and we say that A" (u) is monochromatic if all
of its elements have the same colour. T, is the bipartite tournament defined
as follows: V(Ty) = {u,v,w,x}, A(Ty) = {(u,v), (v,w), (w,x), (u,z)}. We say
that a 3-coloured digraph H is a (1, 1,2) subdivision of C5 (the directed cycle
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of length 3) if H is a directed cycle of length 4, (u1,uz,us, us,u1), such that
(u1,us9) is coloured a, (ug2,us) is coloured b and the arcs (us,us) and (ug,uq)
are coloured ¢, with a # b, b # c and a # c.

In this work we defined the concept of semikernel module i (i is a colour)
that is related to the one of semikernel. We used this concept to proved that
if T is a bipartite tournament such that A" (u) is monochromatic for every
vertex u, every subdigraph of T’ isomorphic to T is at most 2-coloured and
T has no (1,1,2) subdivisions of C3 then T has a kernel by monochromatic
paths.

Keywords: kernel, kernel by monochromatic paths, bipartite tournaments.
AMS Subject Classification: 05C20.
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LIST-COST COLORING OF VERTICES AND/OR EDGES
OF SOME SPARSE GRAPHS

KRZYSzZTOF GIARO
AND
MAREK KUBALE

Gdarisk University of Technology, Gdarisk, Poland

We consider a list-cost coloring of vertices and edges in the model of vertex,
edge, total and pseudototal coloring of graphs. We use a dynamic programming
approach to derive polynomial-time algorithms for solving the above problems
for trees. Then we generalize this approach to arbitrary graphs with bounded
cyclomatic numbers, to multitrees and to linear hypertrees.
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A NOTE ON AN EMBEDDING PROBLEM IN TRANSITIVE
TOURNAMENTS

AGNIESZKA GORLICH AND MONIKA PILSNIAK

AGH University of Science and Technology, Krakéw, Poland

Let T'T,, be a transitive tournament on n vertices. It is known [1] that for
any directed acyclic graph G of order n and of size not greater than 3(n — 1)
two directed graphs isomorphic to G are arc disjoint subgraphs of T'T,,. We
consider a problem of embedding of a graph into its complement in a transitive
tournament. We show that any directed acyclic graph G of size not greater
than 2(n—1) is embeddable into its complement in 7'T},. Moreover, this bound

3
is generally the best possible.
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COLOURING (a,b)-DISTANCE GRAPHS

JAROSEAW GRYTCZUK
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Exoo [1] introduced a variation on the famous Nelson-Hadwiger problem on
colouring the Euclidean plane: what is the minimum number of colours needed
to colour the plane such that points in euclidian distance between 1 — ¢ and
1 + ¢ get different colours. He gives some bounds for some values of ¢ and
offers a conjecture that the number is at least 7 for ¢ > 0. We prove that that
number is at least 5 and give some new bounds for different values of ¢.

Keywords: colouring, Nelson-Hadwiger problem.
AMS Subject Classification: 05C15.
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ON GRAPHS WITH EQUAL 2-DOMINATION
AND DOMINATION NUMBERS

ADRIANA HANSBERG
RWTH Aachen University, 52056 Aachen, Germany

Let G be a simple graph, and let p be a positive integer. A subset D C V(G)
is a p-dominating set of the graph G, if every vertex v € V(G) — D is adjacent
to at least p vertices in D. The p-domination number v,(G) is the minimum
cardinality among the p-dominating sets of (G. Note that the 1-domination
number v;(G) is the usual domination number v(G).

In 1985, Fink and Jacobson showed that, if p > 2 is an integer and G is
a graph with p < A(G), then v,(G) > v(G) + p — 2. This theorem implies
that +,(G) > v(G) when p > 3. However, in the case p = 2 the equality
v2(G) = ~v(G) is possible. We will present some sufficient as well as some
necessary conditions for graphs G with the property that v,(G) = v(G) and
we will analyze some graph classes with respect to this equality.

Keywords: domination, 2-domination.
AMS Subject Classification: 05C69.
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COLORABILITY OF MIXED HYPERGRAPHS AND THEIR
CHROMATIC INVERSES

MATE HEGYHATI

University of Pannonia, Veszprém, Hungary

AND
ZsorT Tuza
Hungarian Academy of Sciences, Budapest and University of Pannonia
Veszprém, Hungary

A mixed hypergraph is a triple H = (X, C, D), where X is the set of vertices,
and C and D are the families of ‘C-edges’ and ‘D-edges’, respectively. Each
C-edge and D-edge is a subset of X with at least two elements. The coloring
of H is proper if

e each C-edge has at least two vertices with a common color, and
e each D-edge has at least two vertices with different colors.

A mixed hypergraph is called colorable if it admits at least one proper coloring;
and otherwise it is termed uncolorable.

The chromatic inverse of H is the mixed hypergraph H¢ = (X, D, C), i.e.,
where each C-edge becomes a D-edge and vice versa. In this talk we prove
that if P # NP, there exists no good characterization or polynomial-time
algorithm to recognize those mixed hypergraphs H such that both H and its
chromatic inverse H¢ are colorable, or both are uncolorable. This assertion is
valid for the restricted class of 3-uniform mixed hypergraphs, too. Our theorem
answers a problem raised implicitly by Voloshin [Australas. J. Combin. 1995]
and explicitly by Voloshin and the second author [Discrete Applied Math.
2000].

Keywords: mixed hypergraph, chromatic inverse, colorable, uncolorable.
AMS Subject Classification: 05C15.
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ON THE GLOBAL AND LOCAL STRUCTURE
OF 1-PLANAR GRAPHS

DAviD HUDAK AND TOMAS MADARAS
University of P.J. Safdrik, Kogice, Slovak Republic

A graph is said to be 1-planar if there exists its drawing in the plane such
that each edge is crossed by at most one another edge. We study various
aspect of global and local structure of 1-planar graphs; we complete results
on the maximum number of edges of small 1-planar graphs and explore some
extremal families (according to minimum vertex degree and girth) of 1-planar
graphs from the point of view of existence small light graphs.

Keywords: l-planar graph, light graph.
AMS Subject Classification: 05C10.
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RESULTS ON ~-CRITICAL GRAPHS

NADER JAFARI RAD
Shahrood University of Technology, University Blvd. Shahrood, IRAN

A graph G with no isolated vertex is total domination vertex critical if for any
vertex v of G that is not adjacent to a vertex of degree one, the total domination
number of G — v is less than the total domination number of G. These graphs
we call y-critical. If such a graph G has total domination number &, we call it
k-~-critical. In this paper we introduce a class of k-y-critical graphs for any
positive integer k > 3 and study some problems of Goddard, Haynes, Henning,
and van der Merwe concerning ~;-critical graphs.

Keywords: total domination, vertex critical, diameter.
AMS Subject Classification: 05C69.
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RAINBOW FACES IN EDGE COLORED PLANE GRAPHS

STANISLAV JENDROL', JOZEF MISKUF, ROMAN SOTAK
AND ERIKA SKRABUL'AKOVA

University of Pavol Jozef Safarik, Kosice, Slovakia

A face of an edge colored plane graph is called rainbow if all its edges receive
distinct colors. The maximum number of colors used in an edge coloring of a
connected plane graph GG with no rainbow face is called the edge-rainbowness
of G.

We prove that the edge-rainbowness of G equals to the maximum number
of edges of a connected bridge face factor H of G, where a bridge face factor
H of a plane graph G is a spanning subgraph H of G in which every face is
incident with a bridge and the interior of any one face f € F/(G) is a subset of
the interior of some face f’ € F(H). We also show upper and lower bounds on
the edge-rainbowness of graphs based on edge connectivity, girth of the dual
G* and other basic graph invariants. Moreover, we present infinite classes of
graphs where these equalities are attained.
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LIGHT GRAPHS — A SURVEY

STANISLAV JENDROL’
P.J. Safirik University, Kogice, Slovakia

It is well known that every planar graph contains a vertex of degree at most 5.
A beautiful theorem of Kotzig 3] states that every 3-connected planar graph
contains an edge whose endvertices have degree-sum at most 13. Fabrici and
Jendrol’ 2] proved that every 3-connected planar graph G that contains a k-
path, a path on k vertices, contains also a k-path P such that every vertex
of P has degree at most 5k. A beautiful result by Enomoto and Ota [1] says
that every 3-connected planar graph G of order at least k contains a connected
subgraph H of order k such that the degree sum of vertices of H in G is at
most 8k — 1. Motivated by these results, a concept of light graphs has been
introduced. A graph H is said to be light in a class G of graphs if at least one
member of G contains a copy of H and there is an integer w(H,G) such that
each member GG of G with a copy of H also has a copy of H with degree sum
> dega(v) < w(H.G).

veV (H)

We will present a survey of results on light graphs in different families of
planar graphs.

Keywords: planar graphs, polyhedral maps, light subgraphs, path, cycle,
embeddings, subgraphs with restricted degrees, triangulation.

AMS Subject Classification: 05C10, 52B10, 05C38, 57N05.
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FINDING COVERING AND PARTITION IN TIME O(2")

KONSTANTY JUNOSZA-SZANIAWSKI AND MICHAEL TUCZYNSKI

University of Technology, Warsaw, Poland

Bjorklund and Husfeldt introduced very simple and fast algorithm based on
inclusion-exclusion principle answering the question is there a covering of given
set by k sets from given family of its subsets. It has many applications e.g.:
to graph colouring. In the general case the algorithm only says if there is
covering, but does not say how to find it. However in case of graph colouring
Bjorklund and Husfeldt gave an algorithm that finds a proper colouring by
finding chromatic numbers of a sequence of graphs built on the given one. Our
main result is an algorithm based on the same methods finding a covering
(partition) in general case.

Keywords: covering, partition, colouring.
AMS Subject Classification: primary 05B40, secondary 05C15.
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ORE-TYPE CONDITIONS FOR ON-LINE ARBITRARILY
VERTEX DECOMPOSABLE GRAPHS

RArAt, KALINOWSKI
AGH University of Science and Technology, Cracow, Poland

A graph G = (V, E) of order n is called arbitrarily vertez decomposable if for

every sequence (nq,...,ny) of positive integers such that n; +--- +np =n
there exists a partition (V7,..., V) of the vertex set V' such that V; induces
a connected subgraph of order n; foreach i =1,... k.

Clearly, each path, and hence each treaceable graph, is arbitrarily vertex
decomposable. Recently, Horfiak, Marczyk, Schiermeyer, and Wozniak proved
the following Ore-type result.

Theorem 1. Let G be a two-connected graph of order n > 11 that admits
a perfect matching or a matching omitting exactly one vertex. If the degree
sum of every pair of nonadjacent vertices is at least n — 4, then G is arbitrarily
vertex decomposable.

In my talk, the on-line version of the problem will be considered.
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TOTAL COLORINGS OF CARTESIAN PRODUCTS
OF GRAPHS

ARNFRIED KEMNITZ

Technische Universitit Braunschweig, Germany

The total chromatic number x”(G) of a graph G is defined to be the minimum
number of colors in an assignment of colors to the elements (vertices and edges)
of G such that neighbored elements (two adjacent vertices or two adjacent edges
or a vertex and an incident edge) must be colored differently. We investigate
the total chromatic number of cartesian products K,, X K,,, of complete graphs,
Cn x C,, of cycles and K, x H as well as C,, x H where H is a bipartite graph.

Keywords: cartesian graph product, total chromatic number.
AMS Subject Classification: 05C15.
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UNIVERSAL SIXTH PARTS OF A COMPLETE GRAPH

ANNA KEDZIOR AND ZDZISEAW SKUPIEN
AGH Krakow, Poland

We consider an edge-decomposition of a complete n-vertex graph K, into t
isomorphic parts so that a possible edge-remainder R is as small as possible.
Namely, |R| = (}) mod ¢. The general conjecture [3] says that there exists a
graph F (called a universal tth part of K,) such that for each R the graph
K, — R is edge-decomposable into t copies of F. The conjecture has been
proved in some cases, e.g. if |R| =1 [2] and ¢ <5 [4]. Our aim is to show that

the conjecture is true for t = 6.

Keywords: minimum remainder, decomposition part, decomposition matrix.
AMS Subject Classification: 05C70, 05C50.
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LATTICE AND ISOMETRIC DIMENSION
OF PARTIAL CUBES

SANDI KLAVZAR

University of Maribor
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A graph G is called a partial cube if it is an isometric subgraph of some
hypercube ,,. Equivalently, G is a partial cube if it can be isometrically
embedded into the integer lattice Z?. The smallest such n and d are called the
isometric dimension and the lattice dimension of G, respectively.

The lattice dimension for some special families of partial cubes has been
determined in [1] and [3]. In [2] the so-called semicube graph of a partial cube
has been introduced and a polynomial time algorithm for finding the lattice
dimension of a partial cube has been described.

We characterize which graphs are semicube graphs of partial cubes. Using
results from [4] partial cubes with equal isometric and lattice dimension are
characterized.

Keywords: partial cube, isometric dimension, lattice dimension.
AMS Subject Classification: 05C75, 056C12, 05C62.

REFERENCES

[1] M. Deza, V. Grishukhin and M. Shtogrin, Scale-Isometric Polytopal Graphs in
Hypercubes and Cubic Lattices. Polytopes in Hypercubes and Z,, (Imperial Col-
lege Press, London, 2004).

[2] D. Eppstein, The lattice dimension of a graph, European J. Combin. 26 (2005)
585-592.

[3] S. Klavzar and M. Kov8e, The lattice dimension of benzenoid systems, MATCH
Commun. Math. Comput. Chem. 56 (2006) 637-648.

[4] S. Klavzar and H.M. Mulder, Partial cubes and crossing graphs, SIAM J. Discrete
Math. 15 (2002) 235-251.



ABSTRACTS 55

ON THE CROSSING NUMBERS OF PRODUCTS OF STARS

MARIAN KLESC
Technical University, Kogice, Slovak Republic

The crossing number cr(G) of a graph G is the minimum possible number of
edge crossings in a drawing of GG in the plane. Computing the crossing number
of a given graph is in general an elusive problem. Garey and Johnson have
proved that this problem is NP-complete. The exact value of the crossing
number is known only for some families of graphs. The structure of Cartesian
products of graphs makes Cartesian products of special graphs one of few graph
classes, for which exact crossing number results are known.

In 1973, Harary, Kainen, and Schwenk established the crossing number
of C3 x C3 and conjectured that cr(C,, x C,) = m(n —2) for 3 < m < n.
Recently has been proved by Glebsky and Salazar that for any fixed m > 3,
the conjecture holds for all n > m(m + 1). Besides the Cartesian products
of two cycles, there are several other exact results. In 2006, Bokal proved
the conjecture given by Jendrol’ and Sterbova that cr (K 1n X Ppn)=(m—1)
5] L”T_lj for the path P, of length m. Applying the capped Cartesian product
operation in combination with a newly introduced m-subdivision he established
the crossing numbers for the Cartesian products of K, with a tree of maxi-
mum degree 3 and for the product W,, x P,,, where W, is the wheel on n + 1
vertices.

In the talk, we summarise the known crossing numbers for the Cartesian
products of stars with small graphs. We present the latest results on crossing
numbers of multipartite complete graphs and we give new values of crossing
numbers of products of stars with other graphs.

Keywords: graph, star, drawing, crossing number.
AMS Subject Classification: 05C10.
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ON PAGE NUMBER OF N-FREE POSETS

ANNA BEATA KWIATKOWSKA AND MACIEJ M. SYSLO

Nicolaus Copernicus University, Torurn; University of Wroctaw

The book embedding of graphs was introduced by Bernhart and Kainen in
1979. In some applications, the book embedding problem for arbitrary graphs
reduces to that for covering graphs of partially ordered sets (posets) over the
set of all linear extensions. We study here the book embedding of posets, in
particular, for some N-free posets.

Let P denote a poset and G(P) its covering graph. A complete character-
ization of posets with page number 1 is known — p(P) = 1 if and only if G(P)
has no cycle, i.e., G(P) is a forest. A complete characterization of posets with
page number 2 is an open question, it is evident only that such posets must be
planar.

Nowakowski and Parker (1989) have provided some bounds for the page
number in general and also for planar posets, and Systo (1990) has proved
some other bounds, in particular investigating the relation between the page
number and the jump number of a poset. Only some partial results for planar
posets are known and it is still an open question whether the page number is
bounded for such posets.

An N is a poset consisting of four elements a, b, ¢, d such that a < ¢,
b < ¢, b < d are the only comparabilities. This poset plays an important role
in studying several algorithmic problems on posets. A poset P is N-free if its
covering digraph (i.e., its Hasse diagram) contains no subdigrah isomorphic
to the covering digraph of N. N-free posets have been introduced by Grillet
(1969) as posets having the C.A.C. property, i.e., each maximal chain meets
each maximal antichain.

An N-free poset P can be defined also as a line digraph. Making use of
characterizations of line digraphs we provide some partial results for the page
number problem on some N-free posets: with tree-like root digraphs (exact
value), arbitrary N-free (bounds), planar N-free.
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SMALL TRANSVERSALS IN HYPERGRAPHS

ZBIGNIEW LONC AND KAROLINA WARNO

Warsaw University of Technology, Poland

A transversal in a hypergraph is a set of vertices that meets all the edges. We
discuss the problem of determining the smallest cardinality of a transversal
for some kinds of hypergraphs. In particular, we present our recent results
concerning a variant of greedy algorithm which constructs small transversals.
Finally, we show a relationship between these results and some other combi-
natorial problems.
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DISTANCE DOMINATION AND DISTANCE
IRREDUNDANCE IN GRAPHS

Dirk MEIERLING
RWTH Aachen University, Aachen, Germany

A set D C V of vertices is said to be a (connected) distance k-dominating
set of GG if the distance between each vertex uw € V — D and D is at most
k (and D induces a connected graph in G). The minimum cardinality of
a (connected) distance k-dominating set in G is the (connected) distance k-
domination number of G. The set D is defined to be a total k-dominating
set of G if every vertex in V is within distance k from some vertex of D other
than itself. The minimum cardinality among all total k-dominating sets of G is
called the total k-domination number. For x € X C V, if N¥[z] - N¥[X —z] #
(), the vertex z is said to be k-irredundant in X. A set X containing only
k-irredundant vertices is called k-irredundant. The k-irredundance number
of G is the minimum cardinality taken over all maximal k-irredundant sets
of vertices of G. We establish lower bounds for the distance k-irredundance
number and some distance domination parameters, especially the distance k-
domination number and total k-domination number, of graphs and trees. In
addition, we present classes of examples that show that these bounds are sharp.
Our results generalize a result of Meierling and Volkmann [6] and Cyman,
Lemarnska and Raczek [1] and results of Favaron and Kratsch [3].

Keywords: domination, irredundance, distance domination number, total
domination number, connected domination number, distance irredundance
number, tree.
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k-CYCLE FREE ONE-FACTORIZATIONS
OF COMPLETE GRAPHS

MARIUSZ MESZKA
AGH University of Science and Technology, Krakéw, Poland

A one-factorization of a regular graph G is uniform if the union of any two
one-factors is isomorphic to the same two-factor H, which is a disjoint union
of even cycles. There are only several infinite classes of known uniform one-
factorizations of complete graphs.

An opposite problem may be dealt with; one can ask about the existence
of one-factorization such that the union of any two one-factors does not include
cycles of given lengths. A one-factorization F' = {F}, Fy,...,F;} of G is said
k-cycle free if the union of any two one-factors does not include the cycle Cy,
as a component. Consequently, F' is k*-cycle free if the union of any two
one-factors does not include all cycles of lengths < k.

It is proved that for every n > 3 and every even k > 4, where k # 2n, there
exists a k-cycle free one-factorization of the complete graph Ks,,. Moreover,
some infinite classes of k*-cycle free one-factorizations of K, are constructed.
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GENERALIZED COLOURING AND THE EXISTENCE
OF UNIQUELY COLORABLE GRAPHS

PETER MIHOK *

Slovak Academy of Science and Technical University, Kogice, Slovakia

Let P1,Pa,..., P, be a graph properties. A vertex (Py, P, ..., P,)-colouring
of a graph G is a partition {V;, Va,...,V,} of its vertex set V(&) into n classes
such that each V; induces a subgraph G[V;| with property P;. A graph G is
said to be uniquely (P1, P2, ..., P,)-colourable, n > 2, if G has exactly one
(P1,Pa,..., Py)-colouring. We will present a short survey on the existence of
uniquely colourable graphs with respect to additive induced-hereditary prop-
erties. Analogous questions for countable graphs will be raised. It will be
shown that each reducible graph property has a generator, which is uniquely
(P1,Pa, ..., Py)-colourable.

Keywords: graph property, additive, induced-hereditary, vertex partitions,
uniquely colourable graphs.
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STRONG GENERATORS OF HOM-PROPERTIES

PETER MIHOK
Technical University Kogice, Slovak Republic

JOzZEF MISKUF
P.J. Safdrik University Kogice, Slovak Republic
AND
GABRIEL SEMANISIN
P.J. Safdrik University Kogice, Slovak Republic

For a simple graph H, — H denotes the class of all graphs that admit homo-
morphisms to H (such classes of graphs are called hom-properties). A strong
generator of the class P of graphs is a graph G such that for every graph G*
belonging to the class P there exists a proper subgraph of G isomorphic to G*
(see e.g. [4]).

We investigate hom-properties from the point of view of the lattice of
hereditary properties of graphs (see also [1, 2, 3]). In particular, we are in-
terested in a characterization of the strong generators of — H. We prove the
existence of a strong generator of — H, for any finite graph H. Moreover, we
show that the structure of the strong generator of — H preserves the struc-
ture of the unique factorization of the hom-property — H = (— Hj)o (—
Hs)o---o(— H,), where Hy, Ho, ... H, are indecomposable graphs satisfying
H =H+ Hy+---+ H, (see [2]).
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k- INTERSECTION EDGE COLOURING

RAHUL MUTHU, NARAYANAN NARAYANAN AND C.R. SUBRAMANIAN

The Institute of Mathematical Sciences, Chennai, India

We introduce the notion of k-intersection edge colouring of a graph G as a
proper edge colouring in which any two adjacent vertices do not have more than
k pairs of edges where each pair receive the same colour. The minimum number
of colours required for such a colouring is called k-intersection chromatic index
and is denoted by x/,(G). We show that x}(G) = O(A?/k) for any G. We also
show that there are graphs which require at least %—: colours. Our results hold
for each k, 1 < k < A. Here, A is the maximum degree of G.

In a proper edge colouring, the number of common colours between a pair
of adjacent vertices can be as high as A(G). If a proper edge colouring is also
a distance-2 edge colouring (which also is an acyclic edge colouring), then the
number of common colours is exactly 1. We need O(A?) colours for a distance-
2 edge colouring, while A + 1 is an upper bound for a proper edge colouring.
k-intersection edge colouring simultaneously generalises both the notions by
allowing the maximum number of colours to be bounded by some k between
1 and A, inclusive of both. Our study is motivated by the interest to know
what happens to the chromatic index when the maximum number of common
colours is bounded by k.

Our proofs are based on probabilistic arguments. We show that our bounds
are tight up to a constant factor for complete graphs.

It would be interesting to know, if the lower bound is tight for other classes
of graphs like bicliques (complete bipartite graphs). Some algorithmic aspects
are also being looked at.
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PACKING OF NONUNIFORM HYPERGRAPHS

PAawERL NAROSKI
Warsaw University of Technology, Poland

Hypergraphs Hy, ..., Hy of order n are mutually packable if one can find their
edge disjoint copies in the complete hypergraph of the same order. We prove
that an arbitrary set of hypergraphs is mutually packable if the product or the
sum of their sizes satisfy some upper bound.

Keywords: nonuniform hypergraph, uniform hypergraph, packing.
AMS Subject Classification: 05C65, 05C70, 05D05.
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NEIGHBOUR-DISTINGUISHING GRAPH-WEIGHTINGS

JAKUB PRZYBYLO

AGH University of Science and Technology, Krakéw, Poland

AND
MARIUSZ WOZNIAK

AGH University of Science and Technology, Krakéw, Poland

The following modification of a conjecture by M. Karonski, T. f.uczak and A.
Thomason will be discussed. Let us assign positive integers to the edges and
vertices of a simple graph G. As a result we obtain a vertex-colouring of G by
sums of weights assigned to the vertex and its adjacent edges. Can we obtain
a proper coloring using only weights 1 and 2 for an arbitrary G7

A positive answer when G is a 3-colourable, complete or 4-regular graph
will be provided. We will also present some upper bounds on this parameter.
In particular, it is enough to use weights from 1 to 11, as well as from 1
to L@j + 1, for an arbitrary graph G. The case of regular graphs will
be discussed separately, as well as a more general version of the problem for
hypergraphs.
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RECENT RESULTS ON DOMINATION AND RELATED
PARAMETERS IN REGULAR GRAPHS OF LARGE GIRTH

DIETER RAUTENBACH

Ilmenau, Germany

In this talk we will survey several recent developments concerning bounds on
the domination number and related graph parameters in regular graphs of large
girth. The methods used to obtain the different results comprise constructive
arguments as well as the agsymptotic analysis of random processes on graphs.

We demonstrate how the combination of these different approaches allows
for instance to prove that the domination number ~ of cubic graphs of order
n and girth ¢ satisfies 7 < 0.3064n + O(n/g) which improves several recent
results considerably.
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WELL PRIMITIVE GRAPHS

JOLANTA ROSIAK

Technical University of Szczecin, Szczecin, Poland

A digraph D is primitive if there exists an integer k& > 0 such that for all pairs
of vertices u,v € V(D) (not necessarily distinct), there is a directed walk from
u to v of length k in D. The least such k is called the exponent of the digraph
D, denoted by exp(D).

Our investigation are restricted to the class of symmetric digraphs. Loops
are permitted. Every symmetric digraph can be obtained from a graph by
replacing each edge by two arcs, one in each direction. In this sense we consider
the primitivity of graphs.

In 1990 Brualdi and Liu [2] introduced generalized exponents of the prim-
itive digraph. One of them is the exponent of the vertex in the primitive
digraph.

Let G be a primitive graph and V(G) = {v1,...,v,}. The vertices of G
can be relabeled in such a way that expg(vi) < expg(ve) < -+ < expg(vy) =
exp(G). Well primitive graph is a primitive graph in which exp,(v) = exp(G),
for all v € V(G). We consider some properties of such graphs.

Keywords: primitive symmetric digraph, exponent of primitivity, generalized
exponent.

AMS Subject Classification: 05C35, 15A33.
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CLOSURES, CYCLES AND PATHS

INGO SCHIERMEYER

Technische Universitit Bergakademie Freiberg, Germany

In 1960 Ore proved the following theorem: Let G be a graph of order n. If
d(u) + d(v) > n for every pair of nonadjacent vertices u and v, then G is
hamiltonian. Since then for several other graph properties similar sufficient
degree conditions have been obtained, so called "Ore-type degree conditions".
In 2000 Faudree, Saito, Schelp and Schiermeyer strengthened Ore’s theorem
as follows: They determined the maximum number of pairs of nonadjacent
vertices that can have degree sum less than n (i.e., violate Ore’s condition)
but still imply that the graph is hamiltonian. In this talk we will show that
for some other graph properties the corresponding Ore-type degree conditions
can be strengthened as well. These graph properties include traceable graphs,
hamiltonian connected graphs, k-leaf connected graphs, pancyclic graphs and
graphs having a 2-factor with two components. Graph closures are computed
to show these results.

Keywords: degree condition, closure, cycles, paths.
AMS Subject Classification: 05C38, 05C85.
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INDEPENDENT DOMINATION NUMBER OF CARTESIAN
PRODUCT OF DIRECTED PATHS AND DIRECTED CYCLES

RAMY SHAHEEN
University of Cambridge, Cambridge, United Kingdom

The independent domination number of a digraph D, denoted i(D), is the
cardinality of the smallest independent dominating set of D.

In this paper we calculate the independent domination number of the
cartesian product of two directed Paths P, and P, for arbitrary m and n. Also,
we calculate the independent domination number of the cartesian product of
two directed cycles C,, and C, for m,n = 0(mod 3), n = 0(mod m) and
m,n = 0(mod 2). There are many values of m and n such that C,, x C,, does
not have an independent dominating set.

Keywords: directed path, directed cycle, cartesian product, independent
domination number.



ABSTRACTS 69

COLORINGS OF ORIENTED GRAPHS

ERIC SOPENA

Université Bordeaux 1, Talence Cedex, France

An oriented graph is a digraph with no loops and no opposite arcs. An oriented
(vertex) k-coloring of an oriented graph G is a partition of the vertex set of
G into k subsets in such a way that all the arcs between any two subsets
have the same direction. Such a coloring may equivalently be viewed as a
homomorphism from G to some oriented graph H on k vertices.

Oriented colorings have been considered by several people for more than
a decade. In this talk, we shall survey main results on this topic, including
the study of the so-called oriented chromatic number as well as the oriented
chromatic index (an oriented arc-coloring of an oriented graph is simply an
oriented vertex-coloring of its line (di)graph).
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ON EXTREMAL k- INDEPENDENT SETS IN GRAPHS

WALDEMAR SZUMNY

Technical University of Rzeszéw, Poland

Let k > 2 be an integer. A subset S C V(G) is a k-independent set of G if
no two of its vertices are in distance less than k. A graph G is called k-well
covered if every maximal k-independent set of vertices in GG is a maximum
k-independent set. We study maximal k-independent sets and maximum k-
independent sets in graphs and their products, among others: in the G-join
and in the duplication of a subset of vertices of a graph. We also consider
the concept of k-well covered graphs which generalizes the concept of well
coveredness.

Keywords: independent set, well covered graph, k-well covered graph, graph
products.
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GEODETIC SETS IN MEDIAN AND CARTESIAN
PRODUCT GRAPHS

ALEKSANDRA TEPEH HORVAT
IMFM, Slovenia

A set S of vertices of a graph G is a geodetic set if every vertex of G lies in at
least one interval between the vertices of S. The size of a minimum geodetic
set in (G is the geodetic number of G.

In this talk we present results on minimum geodetic sets in median graphs,
studied with respect to the operation of peripheral expansion. We show that
geodetic number of a median graph G, obtained by the peripheral expansion
from a graph H along a convex subgraph P, lies between g(H) and g(H)+g(P)
with both bounds being sharp. Along the way geodetic sets of median prisms
are considered and median graphs that possess a geodetic set of size two are
characterized. Upper bounds for the geodetic number of Cartesian product
graphs are proved and for several classes exact values are obtained. It is proved
that many metrically defined sets in Cartesian products have product structure
and that the contour set of a Cartesian product is geodetic if and only if their
projections are geodetic sets in factors. The presented results were obtained
jointly with BoStjan BreSar and Sandi Klavzar.

Keywords: median graph, Cartesian product, geodetic number, geodetic set,
expansion, contour set.
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THREE TOPICS IN EDGE-COLORING: CIRCULAR,
INTERVAL, AND PARITY EDGE-COLORINGS

DougLas B. WEST

University of lllinois — Urbana

This talk will present recent results concerning three types of edge-colorings of
graphs.

I: Circular edge-colorings of cartesian products of graphs (joint work with Xud-
ing Zhu, National Sun Yat-Sen University, Taiwan).

The circular chromatic indez of a graph G, written x.(G), is the minimum
r permitting a function f: F(G) — [0,r) such that 1 < |f(e) — f(e/)| <r —1
when e and €’ are incident; always A(G) < x.(G) < X'(G), where \/(G) is the
ordinary edge-chromatic number.

Let H be an (s — 2)-regular graph of odd order; thus s < x.(HOCo,41) <
s + 1, where [J denotes Cartesian product. For s = 0 mod 4, we prove that
X.(HOC2m41) > s+1/|A(1 —1/s)]|, where ) is the smallest maximum length
of a cycle in a basis of the cycle space of an orientation of H. When H = Cy; 41
and m is large, the lower bound is sharp. In particular, if m > 3k + 1, then
Xe(Cok110Cm+1) = 4 + 1/ [3k/2], independent of m.

II: Proper path-factors and interval edge-coloring of (3,4)-biregular bigraphs
(joint work with Armen S. Asratian, Linkdping University; Carl Johan Cassel-
gren, Umeé University; and Jennifer Vandenbussche, University of Illinois).

An interval coloring of a graph G is a proper coloring of E(G) by positive
integers such that the colors on the edges incident to any vertex are consecutive.
A (3,4)-biregular bigraph is a bipartite graph in which each vertex of one part
has degree 3 and each vertex of the other has degree 4; it is unknown whether
these all have interval colorings. We prove that G has an interval coloring
using 6 colors when G is a (3, 4)-biregular bigraph having a spanning subgraph
whose components are paths with endpoints at 3-valent vertices and lengths
in {2,4,6,8}. We provide sufficient conditions for the existence of such a
subgraph.

III: Parity and strong parity edge-colorings of graphs (joint work with David
P. Bunde, Kevin Milans, and Hehui Wu, University of Illinois).

A parity walk in an edge-coloring of a graph is a walk along which each
color is used an even number of times. We introduce two parameters. Let
p(G) be the least number of colors in a parity edge-coloring of G (a coloring
having no parity path). Let p(G) be the least number of colors in a strong
parity edge-coloring of G (a coloring having no open parity walk). Always
p(G) = p(G) = X'(G).
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Always p(G) > [lgn(G)], with equality for paths and even cycles. When n
is odd, p(C,) = p(Cn) = 1+ [lgn]. Although p(G) and p(G) may differ,
equality is conjectured to hold for all bipartite graphs. The main result that
p(Ky) = 2Mlen] _ 1 generalizes a special case of Yuzvinsky’s Theorem; the
conjecture that p(K,) = p(K,,) holds for n < 16. We mention further results

and many open problems.
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THE NUMBER OF INDEPENDENT SETS INTERSECTING
THE SET OF LEAVES IN TREES

IwoNA WROCH

Technical University of Rzeszéw, Poland

A subset S C V(@) is independent if no two vertices of S are adjacent in G.
The number of independent sets in G is denoted by NI(G). In the chemical
literature the graph parameter N1(G) is referred to as the Merrifield-Simmons
index. The study of the number NI(G) of independent sets in a graph was
initiated in [3]. The literature includes many papers dealing with the theory
of counting of independent sets in graphs, see [1, 2, 3, 4].

Let T be a tree. For € V(T') denote by L(z) the set of leaves attached
to the vertex x. The vertex z € V(T') with L(x) # (0 is called a support vertex.
The set of all support vertices in 7' we denote by S(7") and the set of leaves in
T we denote by L. We consider independent sets intersecting the set of leaves.
In particular we study independent sets S of T such that for every x € S(T),
SN L(x) # 0 ie., S contains for each support vertex at least one leaf. Next
we calculate the number of all independent sets which contain L as a subset.
In each case we characterize extremal trees.

Keywords: independent set, counting, Fibonacci numbers, trees, structural
characterizations.

AMS Subject Classification: 05C20.
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