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On a game of Sokoban type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
J.L. Fouquet, H. Thuillier, J.M. Van Herpe and A.P. Wojda
On linear arboricity of cubic graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
H. Furmańczyk
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ON THE NORMALITY OF CAYLEY GRAPHS

Mehdi Alaeiyan

Iran University of Science and Technology, Tehran, Iran

Let G be a finite group, and let 1G /∈ S ⊆ G. The Cayley di-graph Γ =
Cay(G, S) of G relative to S is the di-graph with vertex set G such that,
for x, y ∈ G, the pair (x, y) is an arc if and only if yx−1 ∈ S. Further, if
S = S−1 := {s−1|s ∈ S}, then Γ is undirected. Γ is connected if and only if
G = 〈s〉.

A Cayley (di)graph Γ = Cay(G, S) is called normal if the right regular
representation of G is a normal subgroup of the automorphism group of Γ.

The concept of normality of Cayley (di)graphs is known to be important
for the study of arc-transitive graphs and half-transitive graphs. Given a finite
group G, a natural problem is to determine all normal or non-normal Cayley
(di)graphs of G. This problem is very difficult and is solved only for the cyclic
groups of prime order by Alspach and the groups of order twice a prime by Du,
Wang and Xu.

Du, Wang and Xu characterized disconnected Cayley graphs. Therefore
the main work to determine the normality of Cayley graphs is to determine the
normality of connected Cayley graphs.

In this paper we first determine all normal undirected Cayley graphs of
Dihedral groups with valency four. Moreover, we give a complete classification
for arc-transitive Cayley graphs of valency five on finite Abelian groups.
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NONREPETITIVE COLORINGS OF GRAPHS

Noga Alon

Tel Aviv University, Israel

and
Jaros law Grytczuk

University of Zielona Góra, Poland

Let k > 2 be a fixed integer. A coloring f of the vertices of a graph
G is k-repetitive if there is n > 1 and a simple path v1v2...vkn of G such
that f(vi) = f(vj) whenever i − j is divisible by n. Otherwise f is called
k-nonrepetitive. The minimum number of colors needed for a k-nonrepetitive
coloring of G is denoted by πk(G). Notice that any 2-nonrepetitive coloring
must be proper in the usual sense, while this is not necessarily the case for
k > 3.

By the 1906 theorem of Thue [6] π2(G) 6 3 and π3(G) 6 2 if G is a simple
path of any length. Let πk(d) denote the supremum of πk(G), where G ranges
over all graphs with ∆(G) 6 d. A simple extension of probabilistic arguments
from [2] (for k = 2) shows that there are absolute positive constants c1 and c2

such that

c1
dk/(k−1)

(log d)1/(k−1)
6 πk(d) 6 c2d

k/(k−1).

Moreover, one can show that for each d there exists a sufficiently large k = k(d)
such that πk(d) 6 d + 1. On the other hand, any bd/2c-coloring of a d-regular
graph of girth at least 2k + 1 is k-repetitive. The maximum number t(d) such
that for each k there is a d-regular graph G with πk(G) > t(d) is not known
for d > 3.

Kündgen and Pelsmajer [4] and Barát and Varjú [3] proved independently
that π2(G) is bounded for graphs of bounded treewidth. By the result of
Robertson and Seymour [5] it follows that if H is any fixed planar graph then
πk(G) is bounded for graphs not containing H as a minor. However, it is still
not known whether there are some constants k and c such that πk(G) 6 c for
any planar graph G. The least possible constant c for which this could hold
(with possibly huge k) is c = 4.

In a weaker version of the problem we ask for nonrepetitive colorings of
subdivided graphs. By the result of Thue every graph has a (sufficiently large)
subdivision which is nonrepetitively 5-colorable (for any k > 2). Clearly this
cannot happen for all graphs if we restrict the number of vertices added to an
edge. For instance, any c-coloring of the complete graph Kn, with each edge
subdivided by at most r vertices, is 2-repetitive if c < logr log2(n/r). The
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question if there are constants c, k, and r such that each planar graph G has
an r-restricted subdivision S with πk(S) 6 c, is open.

There are many interesting connections of this area to other graph coloring
topics. Let s(G) be the star chromatic number of a graph G, that is, the least
number of colors in a proper coloring of the vertices of G, with additional
property that every two color classes induce a star forest. It is not hard to see
that π2(G) > s(G) for any graph G. Hence, by the results of Albertson et al.
[1] it follows that there are planar graphs with π2(G) > 10, and for each t there
are graphs of treewidth t with π2(G) >

(
t+1
2

)
.
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ANTIMAGIC LABELINGS OF THE TREES

Martin Bača

Technical University of Košice, Slovakia

Yuqing Lin

University of Newcastle, Australia

and
Francesc A. Muntaner-Batle

Universidad Internacional de Cataluna, Barcelona, Spain

A graph G = (V,E) is (a, d)-edge-antimagic total if there exists a bijective
function f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} such that the edge-
weights w(uv) = f(u)+f(v)+f(uv), uv ∈ E(G), form an arithmetic progression
with initial term a and common difference d. Such a labeling is called super
if the smallest possible labels appear on the vertices. In this paper we study
super (a, d)-edge-antimagic properties for paths and for a special class of trees
called path-like trees.
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ON THE COST CHROMATIC NUMBER OF GRAPHS

Gábor Bacsó and Zsolt Tuza

Hungarian Academy of Sciences, Budapest, Hungary

In a graph, by definition, the weight of a (proper) coloring with positive
integers is the sum of the colors. The cost chromatic number or the chromatic
sum is the minimum weight of all the proper colorings. The minimum number
of colors in a coloring of minimum weight is the strength of the graph. We
derive general upper bounds for the strength in terms of a new parameter of
representations by edge intersections of hypergraphs.
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THE GAME OF ARBORICITY

Tomasz Bartnicki, Jaros law Grytczuk

University of Zielona Góra, Poland

and
Hal A. Kierstead

Arizona State University, Tempe, USA

We consider the following graph coloring game. Ann and Ben alternately
color the edges of a graph G using a fixed set of colors C. The only restriction
they both have to respect is that no monochromatic cycle may be created. Ann
wants to accomplish a coloring of the whole graph G, while Ben aims to achieve
a partial coloring that would not be extendable without violating the acyclicity
condition. The minimum size of C guaranteeing a win for Ann is the game
arboricity of G, which we denote by Ag(G). Clearly, Ag(G) is at least A(G)
— the usual arboricity of a graph G, that is, the minimum number of forests
needed to cover the edges of G.

Let L(G) denote the minimum of the largest vertex outdegree taken over all
orientations of a graph G. Our main result [2] asserts that Ag(G) 6 3L(G) for
any graph G. We achieve it by a suitable directed-edge version of the activation
strategy. Clearly, L(G) 6 A(G), so we have also Ag(G) 6 3A(G) for any graph
G. On the other hand, for any k we construct a graph G of arboricity k such
that Ag(G) > 2k−2. We also prove that Ag(G) = 2 for any 2-degenerate graph
G, which supports a conjecture that perhaps Ag(G) 6 d, for each d > 1 and
any d-degenerate graph G. If true this would imply that the lower bound is
almost exact.

The arboricity game is a variant of the well-studied vertex coloring game,
introduced independently by Brams [5] and Bodlaender [3]. In the original
game the players color the vertices of a graph G so that no monochromatic edge
may be created. The related parameter is called the game chromatic number,
denoted by χg(G). The most challenging problem here is to determine the
game chromatic number of planar graphs. At present it is known that 17 colors
suffice [10] for any planar graph, and that there are planar graphs demanding
at least 8 colors [7]. The topic is related to arrangability, acyclic colorings,
graph orderings and the related parameters (cf. [4], [7], [8]).

Our results show that Ag(G) behaves more tamely than χg(G). In fact, the
difference between chromatic number χ(G) and game chromatic number χg(G)
can be arbitrarily large already for bipartite graphs. Also some questions which
are hard for the vertex game can be easily answered (at least for some classes
of graphs) using our results. For instance, in [9] Zhu asked whether the fact
that Ann wins the vertex game with k colors on a graph G implies that she



abstracts 17

wins with k + 1 colors, too. At first glance the question looks like a joke — the
more colors, the better for Ann. However, despite some efforts, no proof was
supplied so far. For arboricity game Zhu’s question has a positive answer for
2-degenerate graphs. Also a weaker version of the problem, which asks for a
function f(k) > k such that Ann wins with f(k) colors provided she wins with
k colors, is easily answered by our theorem, as we may take f(k) = 3k. A
nice challenging problem would be to determine the game arboricity of planar
graphs. The above result implies that Ag(G) 6 9 for any planar graph G which
does not seem to be the best possible bound.
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WEIGHT CHOOSABILITY AND COMBINATORIAL
NULLSTELLENSATZ

Tomasz Bartnicki, Jaros law Grytczuk and Stanis law Niwczyk

University of Zielona Góra, Poland

Let S be a subset of the integers. We say G is S-weight colorable if there
is an edge weighting w : E → S such that for any two adjacent vertices u, v
of G the sum of weights of the edges incident to u is different than the sum of
weights of the edges incident to v.

Conjecture 1. (Karoński,  Luczak, Thomason [2])
Each connected graph with more than one edge is {1, 2, 3}-weight colorable.

Recently Addario-Berry et al. [1] proved that any such graph is {1, 2, ..., 16}-
weight colorable, and that for any fixed p ∈ (0, 1) the random graph Gn,p is
asymptotically almost surely 2-weight colorable. We attempt to attack the
conjecture by applying Alon-Tarsi Combinatorial Nullstellensatz. Roughly, we
assign to a given graph G a polynomial in m = |E(G)| variables f(x1, ..., xm)
which encodes our problem, and try to prove that there must be a nonvanishing
monomial in f each of whose exponents is at most 2. If this would be true the
conjecture would follow in the following stronger sense. Let S1, ..., Sm be a
collection of integer subsets assigned to the edges of G. We say that G is d-
weight choosable if for any such assignment with |S1| = ... = |Sm| = d, there is
an edge weighting w : E → Z such that w(ei) ∈ Si, and for any two adjacent
vertices u, v the sum of weights of the edges incident to u is different than the
sum of weights of the edges incident to v.

Conjecture 2.
Every connected graph with at least two edges is 3-weight choosable.

Maybe this conjecture is too optimistic, as we even do not know if there is
any finite bound. But why not to state optimistic conjectures?
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SATISFACTORY GRAPH PARTITIONS AND THEIR
GENERALIZATIONS

Cristina Bazgan1, Zsolt Tuza2 and Daniel Vanderpooten1

1 Université Paris Dauphine, France
2 Hungarian Academy of Sciences, Budapest and University of Veszprém, Hungary

A satisfactory partition of a graph G = (V,E) is a vertex bipartition V1 ∪
V2 = V into nonempty parts such that each vertex v ∈ Vi is adjacent to at least
as many vertices in Vi as in V3−i (i = 1, 2). In the talk we survey results and
open problems concerning the existence and search of satisfactory partitions
and some related generalizations. The latter include partitions into more than
two classes, weighted variants, more general conditions on vertex degrees, and
restrictions on the class sizes of the partitions. Restricted graph classes and
approximation algorithms will also be considered.



20 abstracts

CHROMATIC POLYNOMIALS FOR RECURSIVELY DEFINED
FAMILIES OF GRAPHS

Halina Bielak

Maria Sk lodowska-Curie University, Lublin, Poland

The chromatic polynomial P (G, λ) of a graph G in the variable λ counts for
positive integers λ the proper vertex λ-colourings of G.

In this paper we give an explicite formula for the chromatic polynomial of
some strip graphs with free boundary conditions and cylindrical boundary con-
ditions. Moreover we study the location of chromatic zeros for some families of
such graphs. A relation of chromatic zeros with some phenomena in statistical
mechanics will be presented.

AMS Subject Classification: 05C15.
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ON ACYCLIC COLOURINGS OF SOME CLASSES OF GRAPHS

Mieczys law Borowiecki and Anna Fiedorowicz

University of Zielona Góra, Poland

Following [4], let P1, P2, . . . , Pk be hereditary properties of graphs.
A (P1,P2, . . . , Pk)-colouring of a graph G is a mapping f from the set of
vertices of G to a set of k colours such that for every colour i, the subgraph
induced by the i-coloured vertices has property Pi. Such a colouring is called
acyclic, if for every two distinct colours i and j, the subgraph induced by all
the edges linking an i-coloured vertex and a j-coloured vertex is acyclic.

The notion of acyclic colourings was introduced by Grűnbaum [5], who asked
about planar graphs. In [3] Borodin solved this problem showing that every
planar graph can be acyclically 5-coloured. Sopena, Boiron and Vignal studied
acyclic (P1,P2, . . . ,Pk)-colourings (also called acyclic improper colourings) of
planar and outerplanar graphs, see [1], and graphs with bounded degree, see [2].

In this paper we continue their work, considering acyclic (P1,P2, . . . ,Pk)-
colourings of some classes of graphs. Among others, we prove some new positive
and negative results for outerplanar graphs.

Keywords: graph, acyclic colouring, graph property.
AMS Subject Classification: 05C15.
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ON LIST CHROMATIC NUMBER OF CARTESIAN PRODUCT
OF TWO GRAPHS

Mieczys law Borowiecki1, Stanislav Jendrol’2, Daniel Král’3

and Jozef Mǐskuf2

1 University of Zielona Góra, Poland
2 P.J. Šafárik University, Košice, Slovakia

3 Charles University, Praha, Czech Republic

Given a list L(v) of colours for each vertex v of graph G, we say that a
vertex colouring is acceptable if every vertex is coloured with a colour on its
list and no two adjacent vertices is assigned with the same colour. The list
chromatic number of graph G, denoted χl(G) is minimum r, which satisfies: if
every list has at least r members then there is an acceptable colouring. We
deal with problem formulated by S. Jendrol’ and M. Borowiecki

Let χl(G) denotes list chromatic number of G and let G×H be the
Cartesian product of graphs G and H. Does there exist an absolute
constant c such that χl(G×H) 6 max{χl(G), χl(H)}+c. If answer
is YES, how big is c ? Does c = 1 ?

We prove it in case if one graph is a tree T , i.e. for list chromatic number
holds χl(T ×H) 6 max{χl(T ), χl(G)} + 1. We present an counterexample to
hypothesis in arbitrary case. For arbitrary graphs G and H we prove weaked
theorem χl(G×H) 6 min{χl(G)+col(H), χl(H)+col(G)}−1. We also bound
list chromatic number of G×G for arbitrary graph G asymptotically as follows
χl(G×G) 6 4(G) + o(4(G)) for 4(G) →∞.
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GENERALIZED ON-LINE COLORING

Piotr Borowiecki

University of Zielona Góra, Poland

In this talk the concepts from two intensively studied frameworks, i.e., on-
line coloring and generalized coloring of graphs are combined to define and
investigate generalized on-line colorings.

Among many generalizations of classical graph coloring problem we are
especially interested in on-line P-colorings where P is some additive hereditary
property of graphs (see [1]) for a survey of hereditary properties). On-line P-
coloring turned out to be advantageous in analysis of various on-line resource
management problems [2].

On-line coloring can be viewed as a game of two adversaries called Presenter
and Painter. Painter (on-line algorithm) does not know the structure of a
graph to be colored. Presenter reveals subsequent vertices of graph G in some
order (v1, . . . , vn) which is unknown to Painter. Vertex vi is presented together
with edges Ei ⊆ E(G) to its already presented neighbors. When vertex vi is
presented, Painter has to irrevocably assign c(vi) - one of the permissible colors
and it has to be done before the next vertex is presented. The goal of Painter,
to use as few colors as possible, is opposed to the strategy of Presenter which
aims at finding the vertex ordering that forces Painter to use as much colors
as possible. One of the best known heuristics for on-line graph coloring is the
First-Fit algorithm, which assigns to each vertex as small color as possible (see
[3],[4]) for surveys on on-line coloring).

We define a family of greedy on-line P-coloring algorithms, give some lower
and upper bounds for on-line P-chromatic number and prove that for some
classes of graphs our algorithms are best possible. A finite basis theorem for
the family of on-line First-Fit (P, k)-colorable graphs is given.
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ON EFFICIENT DOMINATING SETS IN TREES

Dorota Bród

Technical University of Rzeszów, Poland

and
Zdzis law Skupień

AGH University of Science and Technology, Kraków, Poland

A vertex dominates both itself and each of its neighbors. A vertex set S
is efficient dominating set in a graph G if each vertex of G is dominated by
exactly one member of S. Trees on n vertices with largest possible number of
efficient dominating sets are characterized and enumerated. In particular, in
the set of those trees for n = 7b+ 2i with i = −1, 0, . . . , 5, given any prescribed
tree T on b vertices where b > 5, there is a member which includes T as an
induced subtree.

Keywords: tree, efficient dominating set, maximizing cardinality, structure.
AMS Subject Classification: 05C05, 05C69, 05C35, 05C75, 05A15.
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THE OUTER-CONNECTED DOMINATION NUMBER
OF A GRAPH

Joanna Cyman

Gdańsk University of Technology, Poland

For a given graph G = (V,E), a set D ⊆ V (G) is said to be an outer-
connected dominating set if D is dominating and the graph G−D is connected.
The outer-connected domination number of a graph G, denoted by γ̃c(G), is
the cardinality of a minimum outer-connected dominating set of G. We study
several properties of outer-connected dominating sets and give some bounds
on the outer-connected domination number of a graph. We also show that the
decision problem for the outer-connected domination number of a graph G is
NP-complete even for bipartite graphs.

Keywords: outer-connected domination number, domination number.
AMS Subject Classification: 05C05, 05C69.
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JOINS OF ADDITIVE HEREDITARY PROPERTIES OF
GRAPHS

Ewa Drgas-Burchardt

University of Zielona Góra, Poland

Let La denote a set of additive hereditary graph properties. It is a known
fact that a partially ordered set (La,⊆) is a complete distributive lattice. In
the paper we decide when a join of two additive hereditary graph properties
in (La,⊆) has a finite or infinite family of forbidden subgraphs. Moreover,
we show that the analysed class of graph properties is disjoint with the set of
reducible over La properties (it was previously observed using an other method
in [2]). That means, each consequence of the paper is not included in the
only known result of this type obtained by A. Berger [1] and stated that for
any additive hereditary reducible property of graphs the family of forbidden
subgraphs is infinite.

Keywords: hereditary property, lattice of additive hereditary graph proper-
ties.
AMS Subject Classification: 05C75, 05C15, 05C35.
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THE UPPER DOMINATION RAMSEY NUMBERS

Tomasz Dzido

University of Gdańsk, Poland

and
Renata Zakrzewska

Gdańsk University of Technology, Poland

The upper domination Ramsey number u(m,n) is the smallest integer p
such that in every 2-coloring the edges of Kp with color red (R) and blue (B),
Γ(B) > m or Γ(R) > n, where Γ(G) is the maximum cardinality of a minimal
dominating set of a graph G. Up to now, there have been known only few exact
values for such numbers. We present new bounds for u(4, 4).

Keywords: edge coloring, upper domination Ramsey number.
AMS Subject Classification: 05C15, 05C55, 05C69.
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ON A GAME OF SOKOBAN TYPE

Zyta Dziechcińska-Halamoda, Zofia Majcher, Jerzy Michael

University of Opole, Poland

and
Zdzis law Skupień

AGH University of Science and Technology, Kraków, Poland

A digraph is called irregular if its different vertices have different degree
pairs. An irregular digraph with fixed number of vertices is the largest (the
smallest) if it has the greatest (the smallest) possible number of arcs. The
number of arcs of the largest (the smallest) irregular digraph is given in DM
236 (2001) 263–272.

In this talk a game of Sokoban type is presented. Any win strategy for this
game gives a construction of a sequence of irregular digraphs in which the first
element is the largest digraph, any successive digraph is obtained from previous
one by the deletion of one arc and the last element is the smallest digraph.

Keywords: irregular digraph, degree pair.
AMS Subject Classification: 05C.
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ON LINEAR ARBORICITY OF CUBIC GRAPHS

J.L. Fouquet, Henri Thuillier, J.M. Van Herpe

University of Orléans, Orléans Cedex, France

and
A. Pawe l Wojda

AGH University of Science and Technology, Kraków, Poland

A linear-k-forest is a graph whose connected components are chordless paths
of length at most k. The linear-k-arboricity of a graph G (denoted lak(G)) is the
minimum number of linear-k-forests which partition E(G) (when k = |V (G)|−1
a linear-k-forest is merely a linear forest, la(G) is then the minimum number of
linear forests partitioning E(G), a linear partition). When such a partition of
E(G) has been imposed, it is said that G has been factored into linear-k-forests.

We consider linear partitions of cubic graphs (for which it is known that
la(G) = 2 (Akiyama, Chvatal)), and we show that paths of length 3 play a
central role.

An odd linear forest is a linear forest in which each component is a path of
odd length. Aldred and Wormald proved that a cubic graph G can be factored
into two odd linear forests if and only if G is 3-edge coloured. Let G be a 3-edge
coloured cubic graph, we show that for any two colours there exists a strong
matching M such that every bicoloured cycle of G contains at least one edge
in M and we study some consequenses of this result.

Let L = (L1, L2) be a linear partition of a cubic graph. Every vertex v is
either end-vertex of a path of L1 or end-vertex of a path of L2. We denote by
eL(v) the edge of this path incident to v. Two linear partitions L = (L1, L2)
and L′ = (L′

1, L
′
2) are compatible if for every vertex v, eL(v) 6= eL′(v). Fouquet

(1991) conjectured that there exist two compatible linear partitions in a cubic
graph. We give some partial results reinforcing this conjecture.
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EQUITABLE LIST COLORING OF GRAPHS

Hanna Furmańczyk

University of Gdańsk, Poland

We consider the problem of graph coloring introduced by Kostochka et al.
in 2003 [1]. Given lists of available colors assigned to each vertex of an n-vertex
graph G, a list coloring is a proper coloring such that the color on each vertex
is chosen from its list. If the lists all have size k then list coloring is equitable if
each colors appears on at most dn/ke vertices. We say that a graph is equitably
k-choosable if such coloring exists for all list assignments L such that |L(v)| = k
for all v ∈ V (G).

Kostochka et al. in [1] formulated following conjecture

Conjecture.
Every graph G is equitably k-choosable whenever k > ∆(G) + 1.

We proved this conjecture for split graphs and some complete r-partite
graphs.
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COUNTING CHROMATIC STRUCTURES BY MATRIX
NETWORKS

Armenak S. Gasparyan

Russian Academy of Sciences, Pereslavl-Zalesskii, Russia

Subject of our research is enumerative combinatorics of finite chromatic
structures, i.e. colorings of finite sets satisfying given structural conditions
(predicats). The general enumerative problem we consider is following: what
is the number of chromatic structures (i.e. color images) of given type? The
type is defined by parameters of underliing sets and by given family of pred-
icats. Such formulation collapses most all famous enumerative combinatorial
problems about colorings, including, in particular, colorings of graphs and hy-
pergraphs.

We propose an original method for solution of above formulated general
problem, namely the multidimensional matrix network method.

The multidimensional matrix network, or simply, matrix network is by def-
inition a family of multi-index matrices connected into entire net by means of a
collection of matrix multiplications. After performing the multiplications, some
indices may remain free, unutilized, and some others closed. Correspondingly,
we may distinguish two type networks: open or closed. The open networks
are itself multidimensional matrices and may be used to form some other net-
works. But the closed networks represent some numbers or functions obtained
as result of network multiplications and hence expressing some integral quan-
tities depending on network structure. These quantities are the combinatorial
numbers (or functions) for the given type chromatic structures.
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SOME NEWS ABOUT INDEPENDENCE

Jochen Harant

Technical University of Ilmenau, Germany

A known upper bound for the independence number of a regular graph
is realized by a continuous optimization problem. Considering the necessary
optimality conditions the tightness of the bound is investigated.
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RECENT RESULTS ON TOTAL DOMINATION IN GRAPHS

Michael A. Henning

University of KwaZulu-Natal, Pietermaritzburg, South Africa

A set S of vertices in a graph G without isolated vertices is a total dom-
inating set of G if every vertex of G is adjacent to a vertex in S. The total
domination number of G is the minimum cardinality of a total dominating set
in G. In this talk, we discuss recent results on total domination in graphs.

AMS Subject Classification: 05C69.
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COMBINATORIAL LEMMAS FOR POLYHEDRONS I

Adam Idzik

Świȩtokrzyska Academy, Kielce and Polish Academy of Sciences, Warsaw, Poland

and
Konstanty Junosza-Szaniawski

Warsaw University of Technology, Poland

We formulate general boundary conditions for a labelling of vertices of a
triangulation of a polyhedron by vectors to assure the existence of a balanced
simplex. The condition is not for each vertex separately, but for a set of vertices
of each boundary simplex. This allows us to formulate a theorem, which is more
general then Sperner’s lemma and theorems of Shapley, Ichiishi, Idzik, Junosza-
Szaniawski. Our results are related to the theorem of van der Laan, Talman
and Yang. A generalization of Poincaré theorem can be derived.

Keywords: labelling, pseudomanifold, simplicial complex, Sperner lemma.
AMS Subject Classification: 05B30, 47H10, 52A20, 54H25.
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COLORING DENSE PLANAR GRAPHS

Franciszek Michal Jagla

Ottawa, Canada

The paper presents an algorithm of coloring cycles of a planar graph with
vertices of at least a degree of five. The introduced notions of cycles, edges’
cyclic numbers, and tiers and layers are crucial components of the algorithm. A
planar graph is decomposed into layers of cycles. The algorithm demonstrates
that at most three colors are sufficient for a layer and four colors are sufficient
for the graph.
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ON TOTAL IRREGULAR LABELLINGS OF GRAPHS

Stanislav Jendrol’

P.J. Šafárik University, Košice, Slovakia

For a simple graph G = (V,E) with vertex set V and edge set E, a labelling
λ : V ∪E → {1, 2, . . . , k} is called a total k-labelling. The weight of an edge xy
under a total k-labelling λ is defined as

wt(xy) = λ(x) + λ(xy) + λ(y) .

A total k-labelling is defined to be a total edge-irregular k-labelling of a graph
G if, for every two different edges e and f of G,

wt(e) 6= wt(f) .

The minimum k for which a graph G has a total edge-irregular k-labelling is
called the total edge irregularity strength of G, tes(G).

We present a survey on results concerning both above mentioned graph
characteristics.
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THE CIRCULAR CHROMATIC INDEX OF GRAPHS OF HIGH
GIRTH

Tomáš Kaiser
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Riste Škrekovski
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and
Xuding Zhu

National Sun Yat-sen University, Kaohsiung and
National Center of Theoretical Sciences, Taiwan

Colorings of graphs form a prominent topic in graph theory. Several relax-
ations of usual colorings have been introduced and intesively studied. In this
talk, we focus on circular colorings of line graphs. A proper circular k-edge
coloring, for real k > 1, is a coloring by real numbers from the interval [0, k)
such that the difference modulo k of the colors c1 nad c2 assigned to incident
edges is at least one, i.e., 1 6 |c1 − c2| 6 k − 1.

A classical theorem of Vizing states that the edges of every graph G with
maximum degree ∆ can be colored by at most ∆ + 1 colors so that no two
incident edges have the same color, i.e., the chromatic index of G is at most
∆ + 1. We show that for every ε > 0 there exists g such that the circular
chromatic index of a graph G with maximum degree ∆ whose girth is at least
g does not exceed ∆ + ε. Note that the index must be at least ∆ because the
line graph of such graph G contains a clique of order ∆.

Our research is motivated by a conjecture of Jaeger and Swart 1979 that
high girth cubic graphs have chromatic index three, which was disproved by
Kochol 1996. Our results imply that the conjecture is true when relaxed to
circular colorings: the circular chromatic index of high girth cubic graphs is
close to three.

One of the ingredients of our proof are recent result on systems of inde-
pendent representatives and hypergraph matchability of by Aharoni, Haxell,
Meshulam and others, which we also briefly survey during the talk.
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CONSTRUCTIONS VIA HAMILTONIAN THEOREMS

Gyula O.H. Katona

Hungarian Academy of Sciences, Budapest, Hungary

Demetrovics, Sali and the present author constructed a decomposition of
the family of all k-element subsets of an n-element set into disjoint pairs
(A,B) (A ∩ B = ∅, |A| = |B| = k) where two such pairs are relatively far
from each other in some sense. The paper invented a proof method using a
Hamiltonian type theorem. This was sharpened in a joint paper with Enomoto
where the result became of coding type. The present paper gives a general-
ization of this tool, hopefully extending the power of the method. Problems
where the method could be also used are shown. Moreover open problems are
listed which are related to the Hamiltonian theory. In these problems a cyclic
permutation is to be found when certain restrictions are given by a family of
k-element subsets. An interesting generalization of Baranyai’s theorem is posed
as an open problem.
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THE CIRCULAR CHROMATIC INDEX

Arnfried Kemnitz

Technische Universität Braunschweig, Germany

A (k, d)-edge coloring (k, d ∈ N, k > 2d) of a graph G is an assignment c of
colors {0, 1, . . . , k − 1} to the edges of G such that d 6 |c(ei) − c(ej)| 6 k − d
whenever two edges ei and ej are adjacent. The circular chromatic index χ′

c(G)
is defined by χ′

c(G) = inf{k/d : G has a (k, d)-edge coloring}. We prove several
properties of χ′

c(G) and determine exact values for some classes of graphs.

Keywords: star chromatic number, circular chromatic number, circular chro-
matic index, edge coloring.
AMS Subject Classification: 05C15.
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DOMATIC NUMBER OF GRAPH PRODUCTS

Monika Kijewska

Maritime University of Szczecin, Poland
and

Maria Kwaśnik

Szczecin University of Technology, Poland

A partition of V (G), all of whose classes are dominating sets in G, is called a
domatic partition of G. The maximum number of classes of a domatic partition
of G is called the domatic number of G. The concept of a domatic number
was introduced in [1]. More interesting results on domatically full graphs,
domatically critical, domatically cocritical graphs and other domatic numbers
can be found in [3], [4], [5], [6], [7].

We explore the bounds the domatic number of the cartesian product, the
strong product and the corona of two graphs. The join of two graphs and its
generalization also is studied. Motivation of this problem comes from [2], where
the domatic number of the cartesian product of two paths was established.

Keywords: domatic number, cartesian product of graphs, strong product of
graphs, join of graphs, corona of graphs.
AMS Subject Classification: 05C69.

References

[1] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in
graphs, Networks 7 (1977) 247–261.

[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundaments of domina-
tion in graphs, New York, Basel, Hong Kong, Marcel Dekker, Inc. (1998).

[3] B. Zelinka, Domatically critical graphs, Czech. Math. J. 30 (1980) 468–
489.

[4] B. Zelinka, Domatically cocritical graphs, Casop. Pest. Mat. 108 (1983)
82–88.

[5] B. Zelinka, Regular totally domatically full graphs, Discrete Math. 86
(1990) 71–79.

[6] B. Zelinka, Point-set domatic numbers of graphs, Math. Bohem. 124
(1999) 77–82.

[7] B. Zelinka, Induced-paired domatic numbers of graphs, Math. Bohem.
127 (2002) 591–596.



abstracts 41

EXTREMAL PROBLEMS ON H-LINKED GRAPHS

Alexandr V. Kostochka

University of Illinois, Urbana, USA and Novosibirsk State University, Russia

and
Gexin Yu

University of Illinois, Urbana, USA

Let H be a graph. An H-subdivision in a graph G is a pair of mappings
f : V (H) → V (G) and g: E(H) into the set of paths in G such that:

(a) f(u) 6= f(v) for all distinct u, v ∈ V (H);
(b) for every uv ∈ E(H), g(uv) is an f(u)f(v)-path in G, and distinct edges

map into internally disjoint paths in G.
A graph G is H-linked if every injective mapping f : V (H) → V (G) can be
extended to an H-subdivision in G.

The notion of an H-linked graph is a common generalization of the notions
of k-linked graphs, k-ordered graphs and k-connected graphs. For example, a
graph G on at least k + 1 vertices is k-connected if and only if G is Sk-linked,
where Sk is the star with k rays. A graph G is k-ordered if and only if G is
Ck-linked, where Ck is the cycle with k edges. A graph G is k-linked if and
only if G is Mk-linked, where Mk is the matching with k edges.

The idea of H-linked graphs originated with Jung more than thirty years
ago, but had not been significantly developed until recently, when the concept
was considered by several authors.

The aim of the talk is to survey recent results on extremal problems on
H-linked graphs with some restrictions on the structure of H.
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LOWER BOUND ON THE WEAKLY CONNECTED
DOMINATION NUMBER OF A TREE

Magdalena Lemańska

Gdańsk University of Technology, Poland

We prove that the weakly connected domination number of every tree T on
n > 3 vertices and with n1 end-vertices satisfies inequality

γw(T ) > 1
2(n(T ) + 1− n1(T ))

and we characterize the extremal trees.

Keywords: weakly connected domination number, tree.
AMS Subject Classification: 05C05, 05C69.
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[4] M. Lemańska, Lower bound on the domination number of a tree, Discus-
siones Matematicae Graph Theory 24 (2004) 165–169.

[5] E. Sampathkumar and H.B. Walikar, The connected domination number
of a graph, Math. Phys. Sci. 13 (1979) 607–613.



abstracts 43

ON THE NUMBER OF MAXIMAL INDEPENDENT SETS IN
3-UNIFORM HYPERGRAPHS

Zbigniew Lonc

Warsaw University of Technology, Poland

and
Miros law Truszczyński

University of Kentucky, Lexington, USA

In 1965 Moon and Moser answered the following question raised by Erdős
and Moser: ”What is the maximum number f2(n) of maximal independent sets
possible in a graph with n vertices ?” They proved that f2(n) = 3n/3, for n
divisible by 3 (for n not divisible by 3, f2(n) differs from 3n/3 by a constant
factor). We consider an analogous question for 3-uniform hypergraphs: ”What
is the maximum number f3(n) of maximal independent sets possible in a 3-
uniform hypergraph with n vertices ?” Tomescu gave a construction of a family
of 3-uniform hypergraphs with n vertices which, for n divisible by 5, have 10n/5

maximal independent sets. Consequently, f3(n) > 10n/5 ≈ 1.5848..n, for n
divisible by 5. When n is not divisible by 5, the lower bound differs from the
bound written above by a constant factor. We show that f3(n) 6 1.6701..n.
In fact we prove a bit stronger result that f63(n) 6 1.6701..n, where f63(n)
is the maximum number of maximal independent sets in a hypergraph with n
vertices in which the cardinality of every edge is at most 3.
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CYCLES IN CLAW-FREE GRAPHS

Tomasz  Luczak

Adam Mickiewicz University, Poznań, Poland

We present some old and new theorems on the cyclic structure of claw-free
graphs, concentrating on recent results obtained jointly with Ronald J. Gould
and Florian Pfender.
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PATH DECOMPOSITIONS OF A COMPLETE MULTIDIGRAPH

Mariusz Meszka and Zdzis law Skupień

AGH University of Science and Technology, Kraków, Poland

The general conjecture says that the complete n-vertex multidigraph λDKn

(ie. the multidigraph obtained by replacing each arc of the complete digraph
DKn of order n by λ arcs) is decomposable into directed paths of arbitrarily
prescribed lengths provided that the lengths sum up to the size λ n (n − 1) of
λDKn, unless all paths are hamiltonian and either n = 3 and λ is odd or n = 5
and λ = 1.

Supporting results for the conjecture will be presented, especially in the
case when all required paths are to be nonhamiltonian.
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SOME PROPERTIES OF P-CONNECTED P-DOMINATION
NUMBERS OF GRAPHS

Danuta Michalak

University of Zielona Góra, Poland

Let P be an induced addtitive hereditary property of graphs. Let F(P)
be a set of forbidden subgraphs for P, i.e. F(P) = {H ∈ I : H 6∈ P but
(H − v) ∈ P for any v ∈ V (H)}.

Let G = (V,E) be a graph. For a vertex v ∈ V , by NP(v) we denote the
P-neighbourhood of v, i.e. NP(v) = {u ∈ V : u is P-adjacent to v}. Two
vertices u and v are P-adjacent if there is an induced subgraph H ′ of G and
H ′ is a graph isomorphic to some H ∈ F(P) (shortly H ′ ∈ F(P) containing u
and v. Let e ∈ E(G). If there is no subgraph H of G, H ∈ F(P) such that e
is contained in H, then e is called P-isolated edge.

A set D is said to be P-dominating in G if for each v ∈ V −D, NP(v)∩D 6= ∅.
A set D is said to be strong P-dominating in G if for each v ∈ V −D, there is

an induced subgraph H ′, H ′ ∈ F(P) containing v such that V (H ′)−{v} ⊆ D.
A graph G is called a P-connected if G has no P-isolated edges and G is a
connected graph.

A set D is said to be P-connected P-dominating (P-connected strong P-
dominating) in G if D is P-dominating (strong P-dominating) and the subgraph
induced by D is a P-connected graph.

There are given some inequalities of corresponding domination numbers and
also are given some some generalizations of well known theorems for graphs,
namely Gallai type theorem generalizing Nieminen, Hedetniemi and Laskar
theorems.
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LATTICE OF ADDITIVE HEREDITARY PROPERTIES AND
FORMAL CONCEPT ANALYSIS

Peter Mihók

Slovak Academy of Science and Technical University, Košice, Slovakia

A graph property P is any nonempty proper isomorphism closed subclass
of the class I of finite simple graphs. A graph property is said to be hereditary
if it is closed under taking subgraphs and additive if it is closed under disjoint
union of graphs. The lattice La of additive hereditary graph properties have
been introduced and investigated in connection with generalized colourings of
graphs. Some results on the structure of the lattice La can be easily generalized
and proved for digraphs, hypergraphs, posets and other structures. The aim
of our talk is to introduce additive hereditary properties as concepts of an
appropriate context in the Formal Concept Analysis (FCA). The first paper on
the Formal Concept Analysis was published by R. Wille in 1982. The method
has been originally proposed as a mathematical model of data analysis and it
is used as a tool for structured knowledge representation e.g. in the semantic
web. FCA is based on a notion of a formal context, which is defined as a
triple (O,A, |=), where O-objects and A-attributes are non-empty classes/sets
and |= is a binary incidence relation between O and A. The concepts of a
context (O,A, |=) are ordered pairs (X, Y ) where X ⊂ O and Y ⊂ A are
closed sets wits respect to related closure operators on O and A, respectively.
We will show that the lattice La of additive hereditary properties is in fact
the complete algebraic lattice of formal concepts of the the context (I,−C,∈)
where the objects are finite graphs, i.e. I, the attributes are the properties −F
- ”do not contain a given finite connected graph F” and the incidence relation
is simply G ∈ −F . Thus each graph property P has its extent X = P ⊂ I and
its intent Y = F , the class of forbidden graphs for P. In this context, we can
use FCA to obtain deeper view to additive hereditary graph properties. For
example, if we enlarge I in the given context to the class I∗ of all simple (also
infinite) graphs, we obtain an isomorphic lattice of additive graph properties of
finite character. Our approach can be used analogousely to object-system and
we will describe the ideas and reasons, which allows us to prove different types
of general statements as e.g. Unique Factorization Theorems.
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ON COLORING A COMMUTATIVE SEMIRINGS

Krishnan Paramasivam1, R.S. Raja Durai2 and W.B. Vasantha1

1 Indian Institute of Technology, Madras (Chennai), India
2 TEMICS, IRISA, Rennes Cedex, France

In 1988, Beck introduced the concept of coloring a commutative ring and
determined the chromatic number of commutative rings which are finite col-
orable. A commutative ring R is considered as a simple graph GR with the
vertex set R and two different vertices x and y are adjacent if and only if x is a
zero-divisor of y. In this paper, we discuss the problem of coloring a commuta-
tive semiring. We compute the chromatic number of a finite Boolean algebra.
Moreover, we construct some new classes of commutative semirings using Zn,
the set of all integers modulo n and compute their chromatic number.

Keywords: commutative semiring, coloring, chromatic number.
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THE EXTENDABLE GRAPHS

Monika Perl

Szczecin University of Technology, Poland

Let G be a simple graph and N(u) denote the open neighbourhood of u ∈
V (G). We say that a set S ⊆ V (G) is:

(1) nearly perfect dominating set ([2]) if for every vertex u ∈ V (G)− S,
|N(u) ∩ S| > 1 or

(2) perfect dominating set ([1]) if for every vertex u ∈ V (G)−S, |N(u) ∩ S| = 1.

A set S ⊆ V (G) having some property P is called P-set. We say that S is a
1-maximal P-set if for every vertex u ∈ V (G)−S, the set S∪{u} does not have
property P. We define P(G) to be the minimum cardinality of a 1-maximal
P-set in a graph G. The 1-maximal P-set of the cardinality P(G) we will call
P(G)-set.

The connected graph G is said to be k-extendable with respect to P-set (for
short: k-extendable) if P(G) 6= |V (G)| and every P-set of size k in G is a proper
subset of some P(G)-set. The maximum k such that G is k-extendable is the
extendability number of a graph G and it is denoted by EP(G).

We present some results concerning the relationship between extendability
with respect to nearly perfect dominating set and extendability in the sense of
perfect dominating set in special graphs.

Keywords: domination.
AMS Subject Classification: 05C69.
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RECENT ADVANCES IN SEVERAL AREAS OF DOMINATION
IN GRAPHS

Michael D. Plummer

Vanderbilt University, Tennessee, USA

A subset of verices D of a graph G is a dominating set for G if every vertex of
G not in D is adjancent to one in D. The cardinality of any smallest dominating
set in G is denoted by γ(G) and called the domination number of G.

In this talk, we report on some recent results obtained with N. Ananchuen
wnd with K. Kawaradayashi and A. Saito involving three different areas of
domination in graphs.

Graph G is said to be γ-edge-critical if γ(G + e) < γ(G) for each edge
e /∈ E(G) and is said to be γ-vertex-critical if γ(G− v) < γ(G) for each vertex
v ∈ V (G). The structure of both γ-edge-critical graphs and γ-vertex-critical
graphs is not well understood, even in case when γ(G) = 3. We will present
some new theorems involving matchings in both classes.

Reed conjectured in 1996 that if G is a cubic graph with n verices, then
γ(G) 6 d |V (G)|

3 e. We will close by presenting some new resaults pertaining to
this conjecture.
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DISTANCE PAIRED DOMINATION NUMBER OF A TREE

Joanna Raczek

Gdańsk University of Technology, Poland

We study a generalization of the paired domination number. A set D ⊆
V (G) is a k-distance paired dominating set of a graph G = (V,E) if D is
k-distance dominating set of G and the induced subgraph 〈D〉 has a perfect
matching. The k-distance paired domination number γk

p (G) is the cardinality of
a smallest k-distance paired dominating set of G. We give an upper bound and
a lower bound on the k-distance paired domination number of a non-trivial tree
T in terms of the size of T and the number of leaves in T . We also characterize
the extremal trees.

Keywords: paired domination number, k-distance paired domination num-
ber, trees.
AMS Subject Classification: 05C05, 05C69.
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THE SPECIAL CLASS OF THE PRIMITIVE DIGRAPHS

Jolanta Rosiak

Szczecin University of Technology, Poland

A digraph D is primitive if there exists an integer k > 0 such that for
all ordered pairs of vertices u, v ∈ V (D) (not necessarily distinct), there is a
walk from u to v of length k. By a walk we mean a direct path with possibly
repeated vertices and arcs. The least such k is called the exponent of the digraph
D, denoted by exp(D). The symmetric digraph is primitive, if and only if it is
connected and contains odd cycles. There is known in the literature, the upper
bound of the exponent of the primitive symmetric digraph D is 2 |V (D)| − 2.
Every symmetric digraph can be obtained from a graph by replacing each edge
by two arcs, one in each direction. In this sense we consider the primitivity of
graphs.

We define the partial join G0(G) + H of graph G and H with respect to
the induced subgraph G0 6 G in the following way: it is a graph with the
set of vertices V (G) ∪ V (H) and the set of edges E(G) ∪ E(H) ∪ E0, where
E0 = {uv : u ∈ V (G0) ∧ v ∈ V (H)}.

We consider the graphs H, G0 and G from special classes of graphs. Our
aim is to prove that exp(G0(G) + H) ∈ {exp(G), exp(G) + 1, exp(G) + 2}.

Keywords: primitive graph, exponent of the primitivity.
AMS Subject Classification: 05C45.
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ON REED’S CONJECTURE ABOUT ω, ∆ AND χ

Ingo Schiermeyer

Technische Universität Bergakademie Freiberg, Germany

For a given graph G, the clique number ω(G), the chromatic number χ(G)
and the maximum degree ∆(G) satisfy ω(G) 6 χ(G) 6 ∆(G) + 1. In 1941
Brooks has shown that complete graphs and odd cycles are the only graphs
attaining the upper bound ∆(G) + 1.

In 1998 Reed posed the following conjecture

Conjecture. For any graph G of maximum degree ∆,

χ(G) 6 d∆ + 1 + ω

2
e.

The Chvátal graph, the smallest 4-regular, triangle-free graph of order 12
with chromatic number 4, shows that the rounding up in this conjecture is
necessary. In this talk we will present some old and new partial solutions for
this conjecture.

In particular we will show that the conjecture is true
(1) for all graphs of order n 6 12,
(2) for all graphs with ∆(G) = n− k and α(G) > k for fixed k and
(3) for all graphs with n− 5 6 ∆(G) 6 n− 1.

References

[1] B.A. Reed, ω, ∆ and χ, J. Graph Theory 27 (4) (1998) 177–212.



54 abstracts

SELF-COMPLEMENTARY k-UNIFORM HYPERGRAPHS

A. Pawe l Wojda 1

AGH University of Science and Technology, Kraków, Poland

A k-uniform hypergraph H = (V ; E) is called self-compementary if there
is a permutation σ : V → V , called self-complementing, such that for every
k-subset e of V , e ∈ E if and only if σ(e) /∈ E. In other words, H is isomorphic
with H ′ = (V ;

(
V
k

)
− E).

In the paper, for every k, 1 6 k 6 n, we give a characterisation of self-
complementig permutations of k-uniform self-complementary hypergraphs of
order n. This characterisation implies the well known results for self-complemen-
ting permutations of graphs, given independently in the years 1962–1963 by
Sachs and Ringel, and those obtained for 3-uniform hypergraphs by Kocay,
for 4-uniform hypergraphs by Szymański, and for general (not uniform) hyper-
graphs by Zwonek.

1The research was partly supported by AGH local grant. A part of this work was carried
out while the author was visiting University of Orléans



abstracts 55

CIRCULAR CHROMATIC INDEXES OF GRAPHS

Xuding Zhu

National Sun Yat-sen University, Kaohsiung, Taiwan

Suppose G is a graph and r > 2 is a real number. A (circular) r-coloring
of G is a mapping c : V (G) → [0, r) such that for each edge xy of G, 1 6
|c(x)− c(y)| 6 r − 1. The circular chromatic number χc(G) of G is defined as

χc(G) = inf{r : there is a circular r-coloring of G}.

It follows easily from the definition that χc(G) 6 χ(G) and it is also easy to
show that χc(G) > χ(G)−1. This implies that χ(G) = dχc(G)e. We say χc(G)
is a refinement of χ(G), and χ(G) is an approximation of χc(G). The study
of circular chromatic number of graphs has attracted considerable attention,
and has become an important branch of chromatic graph theory. In this talk,
I will concentrate on the circular chromatic number of line graphs. Let L(G)
be the line graph of G. Then χc(L(G)) is called the circular chromatic index of
G and is denoted by χ′

c(G). Similarly, the circular chromatic index of a graph
G is a refinement of its chromatic index. It follows from Vizing Theorem that
∆(G) 6 χ′

c(G) 6 ∆(G) + 1 (assuming that G is a simple graph). The following
results have been proved recently by several groups of authors:
(1) If G is cubic and 2-edge connected, then χ′

c(G) 6 11/3.
(2) If G is cubic and has large girth, then χ′

c(G) < 3 + ε.
(3) If G has maximum degree k and has large girth, then χ′

c(G) < k + ε. Here
ε > 0 approaches 0 as the girth goes to infinity.

In this talk I shall sketch a proof of the result (3).
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ON SOME ARBITRARILY VERTEX DECOMPOSABLE
GRAPHS

Irmina A. Zio lo

AGH University of Science and Technology, Kraków, Poland

A graph G of order n is called arbitrarily vertex decomposable if for each
sequence (n1, ..., nk) of positive integers such that n1 + ... + nk = n there exists
a partition (V1, ..., Vk) of the vertex set of G such that for each i ∈ {1, ..., k}
Vi induces a connected subgraph of G on ni vertices. Arbitrarily vertex de-
composable graphs have been considered in some papers ([1], [2], [3]). The
problem of deciding whether a given graph is arbitrarily vertex decomposable
is NP-complete [4]. However, each traceable graph is arbitrarily vertex decom-
posable. It is also clear that a connected graph is arbitrarily vertex decompos-
able if its spanning tree is arbitrarily vertex decomposable. In the report some
families of arbitrarily vertex decomposable trees and unicyclic graphs will be
characterised.
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Mariusz Woźniak mwozniak@uci.agh.edu.pl
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