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F. Göring, J. Harant
On domination in graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
S. Gravier, S. Klavžar, M. Mollard
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On the crossing numbers of products of small graphs. . . . . . . . . . . . . . . . . . . . . . .38
M. Kucharska
On (k, l)-kernel perfectness of special classes of digraphs . . . . . . . . . . . . . . . . . . . 39
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Dominating numbers in graphs with removed edge or set
of edges 42
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On the split domination number of the Cartesian product
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Special kinds of well coveredness of generalized Cartesian
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12.10-12.30 Izak Broere, Bonita S. Wilson
Partition problems of planar graphs 19

12.30-12.50 Peter Mihók
Characteristic of hereditary graph properties 44
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On generalized k-degenerate graphs 49

13.10-13.30 Boštjan Brešar, Sandi Klavžar
Square-free colorings of graphs 18
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19.00-20.00 dinner

WEDNESDAY 24.09.03

7.30- 8.30 breakfast

8.30-17.00 EXCURSION
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AN ALGORITHM FOR GENERATING REGULAR GRAPHS

Krystyna T. Balińska, Tomasz Lubiński, Krzysztof T. Zwierzyński

Technical University of Poznań, Poland

Several methods of generating labeled regular graphs uniformly are known
(e.g. [1]-[4]). In [5] the problem of obtaining regular graphs as an outcome of
the random process for graphs with bounded degree is discussed.

A randomized algorithm for generating regular graphs, proposed in [6], will
be described. Its main idea is as follows. Given n - the number of vertices
and r - the degree of regularity, initially colour all vertices blue. Next, for each
vertex i, 1 ≤ i ≤ n, uniformly select neighbours of i from Li, the set of available
vertices relative to i. If the degree of a vertex i reaches r, then colour this vertex
red. If deg(i) < r and Li is empty, then for the two cases: (a) deg(i) < r−1, and
(b) deg(i) = r − 1 a procedure of exchanging edges is applied. The algorithm
terminates when all vertices are coloured red. The computational complexity
and other properties of this algorithm will be given.

Keywords: regular graphs.
AMS Subject Classification: 05C30.

References

[1] N.C. Wormald, Generating random regular graphs, J. Algorithms (1984)
247–280.

[2] M. Jerrum, A. Sinclair, Fast uniform generation of regular graphs, Theo-
retical Computer Science 73 (1990) 91–100.

[3] B.D. McKay, N.C. Wormald, Uniform generation of random regular graphs
of moderate degree, J. Algorithms 11 (1990) 325–338.

[4] A. Steger, N.C. Wormald, Generating random regular graphs quickly,
Combinatorics, Probab. and Comput. 8 (1999) 377–396.

[5] K.T. Balińska, Algorithms for random graphs with bounded degree, The
Technical University of Poznań Press 314, Poznań (1996).

[6] T. Lubiński, The algorithm genregTL, in: K.T. Balińska, K.T. Zwierzyński,
Projektowanie algorytmów grafowych, The Technical University of Poznań
Press, Poznań (2002) 60–61 (in Polish).
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RAMSEY NUMBERS FOR SOME DISJOINT CYCLES

Halina Bielak

Maria Sklodowska-Curie University, Lublin, Poland

Let F, G, H be simple graphs with at least two vertices. The Ramsey number
R(G,H) is the smallest integer n such that in arbitrary two-colouring (say red
and blue) of Kn a red copy of G or a blue copy of H is contained (as subgraphs).
If G ∼= H we write R(G) instead of R(G,G).

We study the Ramsey number R(G), where G is a disjoint union of some
cycles.

Keywords: cycle, Ramsey number, union of cycles.
AMS Subject Classification: 05C.
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GENERATING LABELED CUBIC PLANAR GRAPHS
UNIFORMLY AT RANDOM

Manuel Bodirsky1, Clemens Gröpl2 and Mihyun Kang1

1Humboldt University Berlin, Germany
2Free University Berlin, Germany

McKay and Wormald [1] showed how to generate random regular graph of
moderate degree uniformly at random in an expected polynomial time. But
little is known if we restrict our attention to random regular planar graphs: a
planar graph is a graph which can be embedded in the plane, whereas a planar
map is an embedded graph.

We present an expected polynomial time algorithm to generate labeled 3-
regular (i.e. cubic) planar graphs uniformly at random. We derive recurrence
formulas that exactly count all such graphs on n vertices, based on a decom-
position along the connectivity structure of the graph into 1-, 2-, 3-connected
components. The recurrence formulas can be evaluated in polynomial time
using dynamic programming and they immediately yield the generation proce-
dures. As a final step of enumeration and generation, we make use of the fact
that a 3-connected cubic planar graph has a unique embedding and the dual of
a 3-connected cubic planar map is a 3-connected planar triangulation. We thus
employ the number of 3-connected planar triangulations by Tutte [3] and the
uniform generation algorithm of 3-connected planar triangulations by Schaeffer
[2].

Keywords: cubic planar graphs, uniform generation, exact enumeration, de-
composition, connectivity.
AMS Subject Classification: 05C30, 68R10.

References

[1] B.D. McKay, N.C. Wormald, Uniform generation of random regular graphs
of moderate degree, J. of Algorithms 11 (1990) 325–338.

[2] G. Schaeffer, Random sampling of large planar maps and convex polyhe-
dra, in: Proc. of the thirty-first annual ACM symposium on theory of
computing (STOC’99) (1999) 760–769.

[3] W.T. Tutte, A census of planar triangulations, Canad. J. Mathematics
14 (1962) 21–38.
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GAME PARTITIONS OF GRAPHS

Mieczys law Borowiecki and Elżbieta Sidorowicz

University of Zielona Góra, Poland

We denote by I the class of all finite simple graphs. A graph property is a
nonempty isomorphism-closed subclass of I. A property P is called (induced)
hereditary if it is closed under (induced) subgraphs.

Given hereditary properties P1,P2, ...,Pn, a vertex (P1,P2, ...,Pn)-partition
(generalized colouring) of a graph G ∈ I is a partition (V1, V2, ..., V2) of V (G)
such that for i = 1, 2, ..., n the induced subgraph G[Vi] has the property Pi.

We consider the version of colouring game. We combine: the colouring
game and generalised colouring of graphs as follows. The two players are Alice
and Bob and they play alternatively with Alice having the first move. Given
a graph G and an ordered set of hereditary properties (P1,P2, ...,Pn). The
players take turns colouring of G with colours from {1, 2, ..., n} such that for
each i = 1, 2, ..., n the induced subgraph G[Vi] (Vi is the set of vertices of G with
colour i) has property Pi after each move of players. If after |V (G)| moves the
graph G is (P1,P2, ...,Pn)-partitioned (generalized coloured) then Alice wins.
Above defined game we will call (P1,P2, ...,Pn)-game.

In this talk some new results and open problems on the (P1,P2, ...,Pn)-game
will be presented.

Keywords: game generalized colouring, hereditary property.
AMS Subject Classification: 05C15, 05C75.

References

[1] H.L. Bodlander On the complexity of some colorings games, Internat.
J. Found. Comput. Sci. 2 (1991) 133–147.

[2] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: V.R. Kulli,
ed., Advances in Graph Theory (Vishwa International Publication, Gul-
barga, 1991) 41–68.

[3] M. Borowiecki, I. Broere, M. Frick, P. Mihók, G. Semanǐsin, A survey of
hereditary properties of graphs, Discussiones Mathematicae Graph Theory
17 (1997) 5–50.
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GAME LIST COLOURING OF GRAPHS

Mieczys law Borowiecki and Elżbieta Sidorowicz

University of Zielona Góra, Poland

Let N denote the set of positive integers and 2N denote the power set of
N . A list assignment L for G is a function L : V → 2N . A function f : V → N
is an L-colouring of G if f(v) 6= f(u) whenever vu ∈ E(G) and f(v) ∈ L(v) for
all v ∈ V (G). If G admits an L-colouring, then G is said to be L-colourable. If
|L(v)| = k for every v ∈ V (G) then L is a k-list-assignment.

We consider the two-players game defined as follows. Let (G, L) be a graph
G with a list assignment L. The two players are Alice and Bob and they play
alternatively with Alice having the first move. Alice’s goal is to provide an
L-colouring of G and Bob’s goal is to prevent her from doing so. A move
consists in choosing an uncoloured vertex v and assigning it a colour from the
set L(v). This game will be called game list colouring. We say that (G,L) is
game list colourable if Alice has a winning strategy. The game choice number
of G, denoted by chg(G), is defined as the least k such that Alice has a winning
strategy for any k-list-assignment of G.

We characterize the class of graphs with chg(G) ≤ 2 and determine the
game choice number for some class of graphs.

Keywords: game list colouring, game choice number.
AMS Subject Classification: 05C15, 05C75.

References

[1] H.L. Bodlander On the complexity of some colorings games, Internat.
J. Found. Comput. Sci. 2 (1991) 133–147.

[2] P. Erdós, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc.
West Coast Conf. on Combin., Graph Theory and Computing, Congres-
sus Numerantium XXVI (1979) 125–157.
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SQUARE-FREE COLORINGS OF GRAPHS

Boštjan Brešar and Sandi Klavžar

University of Maribor, Slovenia

Let G be a graph and c a coloring of its edges. If the sequence of colors along
a walk of G is of the form a1, . . . , an, a1, . . . , an, the walk is called a square walk.
We say that the coloring c is square-free if any open walk is not a square and
call the minimum number of colors needed so that G has a square-free coloring
a walk Thue number and denote it by πw(G). This concept is a variation of the
Thue number introduced in [1].

Using the walk Thue number several results of [1] are extended. The Thue
number of some complete graphs is extended to Hamming graphs. This result
(for the case of hypercubes) is used to show that if a graph G on n vertices
and m edges is the subdivision graph of some graph, then πw(G) ≤ n − m

2 .
Graph products are also considered. An inequality for the Thue number of the
Cartesian product of trees is extended to arbitrary graphs and upper bounds
for the (walk) Thue number of the direct and the strong products are also given.
Using the latter results the (walk) Thue number of complete multipartite graphs
is bounded which in turn gives a bound for arbitrary graphs in general and for
perfect graphs in particular.

Keywords: coloring, non-repetitive, Thue number, walk.
AMS Subject Classification: 05C15, 11B75.

References

[1] N. Alon, J. Grytczuk, M. HaÃluszczak, O. Riordan, Non-repetitive colorings
of graphs, Random Structures Algorithms 21 (2002) 336–346.
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PARTITION PROBLEMS OF PLANAR GRAPHS

Izak Broere and Bonita S. Wilson

Rand Afrikaans University, Johannesburg, Republic of South Africa

We follow the notation and terminology of M. Borowiecki et al. in [1].
A graph property is a non-empty isomorphism-closed subset of the set of all
mutually non-isomorphic graphs I. A property P of graphs is called additive if
it is closed under the union of graphs, i.e., if every connected component of a
graph G has property P, then G ∈ P. The property P is called hereditary if it
is closed under taking subgraphs, i.e., if H ⊆ G and G ∈ P then H ∈ P too.
We note that, for each positive integer k, Tk = {G ∈ I |G contains no subgraph
homeomorphic to Kk+2 or Kb k+3

2
c,d k+3

2
e} is an additive hereditary graph prop-

erty. Furthermore, T3 is, by Kuratowski’s Theorem (see [2]), the set of planar
graphs.
For properties P1 and P2 a vertex (P1,P2)-partition of a graph G is a partition
V1, V2 of V (G) such that for each i the induced subgraph G[Vi] has property Pi.
(The empty set will be regarded as a set inducing a subgraph with any property.)
For given properties P1 and P2 we define the product by P1 ◦ P2 = {G ∈ I| G
has a vertex (P1,P2)-partition}.
In this paper we present some results of the form T3 6⊆ P ◦ Q by showing the
existence of suitable planar graphs which do not admit the required (P,Q)-
partition for some well-known properties P and Q. We also present results of
the form: If T3 ⊆ P◦Q with Q fixed, then P has to satisfy certain requirements.

Keywords: planar graph, hereditary property.
AMS Subject Classification: 05C10, 05C15.

References

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók, G. Semanǐsin, A survey of
hereditary properties of graphs, Discussiones Mathematicae Graph Theory
17 (1997) 2–38.

[2] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund.
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ARITHMETICALLY MAXIMAL INDEPENDENT SETS
IN INFINITE GRAPHS

Stanis law Bylka

Polish Academy of Sciences, Warsaw, Poland

Let Γ(G) be the set of all independent vertices of a graph G. An arithmeti-
cally maximal independent set (a.m.i.s.) of G is a set S ∈ Γ(G) such that for
every pair of finite sets of vertices A ⊂ S and B ∩ S = ∅, if (S \A)∪B ∈ Γ(G)
then |A| ≥ |B|. For any graph G, a König covering of G is an ordered pair
(S,K) such that S ∈ Γ(G), K is a cliques covering of vertices of G, and S
consists a vertex from every clique of K. Clearly, if (S,K) is a König covering
of G then |S| = |K|. We know that

(1) if (S,K) is a König covering of G then S is an a.m.i.s. of G,

(2) every finite graph G has an a.m.i.s. of vertices.

Every bipartite graph has an a.m.i.s. because the König duality theorem and
its extensions for countable and uncountable bipartite graphs. This paper is
devoted to the problem of a.m.i.s. of vertices in graphs. A negative answer
is given for tripartite graphs. A positive solution is given for line graphs and
graphs having locally finite clique covering. Some counter-examples are also
presented.

Keywords: countale graphs, bipartite graphs, line graphs, independent sets,
coverings.
AMS Subject Classification: 05D15.
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ADDITIVE HEREDITARY PROPERTIES OF HYPERGRAPHS
BASED ON CHROMATIC SUMS OF HYPERGRAPHS

Ewa Drgas-Burchardt and Anna Fiedorowicz

University of Zielona Góra, Poland

The chromatic sum of a hypergraph H is the smallest sum of colors among
all proper colorings using natural numbers. This notion for graphs was intro-
duced by E. Kubicka in [2]. We construct additive hereditary properties of
hypergraphs based on chromatic sums of hypergraphs. Namely, a hypergraph
H has a property Σa

k if and only if every component of H has a chromatic sum
bounded above by

(k+2
2

)
. We analize the properties Σa

k, k = 1, 2, . . . in terms of
maximal hypergraphs and minimal forbidden subhypergraphs. Besides, we give
the generating function for a sequence describing a number of maximal graphs
of properties Σa

k, k = 1, 2, . . .

Keywords: hypergraph, chromatic sum, additive hereditary property.
AMS Subject Classification: 05C65, 05C15.
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ON PANCHROMATIC COLORINGS OF HYPERGRAPHS

Ewa Drgas-Burchardt

University of Zielona Góra, Poland

and
Ewa  Lazuka

Technical University of Lublin, Poland

Let H be a hypergraph and k ≥ 2 be a positive integer. A vertex k-coloring
of H is panchromatic if each of the k colors is used on every egde of H [1,2]. The
number of panchromatic k-colorings of H is given by a polynomial fk(H, λ) of
degree |V (H)| in λ, called the k-panchromatic polynomial of H.

We present the method of calculating the k-panchromatic polynomial of any
hypergraph. It uses the partitions of a graph induced by a k-subset of a fixed
edge of H into stable sets. We apply this method to several types of hyper-
graphs. We also study some coefficients of fk(H,λ).

Keywords: panchromatic coloring of a hypergraph, chromatic polynomial of
a hypergraph.
AMS Subject Classification: 05C15.
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HAMILTONIAN PATH SATURATED GRAPHS WITH
MINIMUM SIZE

Aneta Dudek1, Gyula Y. Katona Jr.2 and A. Pawe l Wojda1

1AGH University of Science and Technology, Kraków, Poland
2Budapest University of Technology, Hungary

A graph G said to be hamiltonian path saturated (HPS for short), if G has no
hamilltonian path but any addition of a new edge in G creates in G hamiltonian
path.

In 1977 Bondy proved that an HPS graph of order n has the size at most(n−1
2

)
and, for n ≥ 6, the only HPS graph of order n and size

(n−1
2

)
is Kn−1∪ K1.

Denote by sat(n,HP ) the minimum size of an HPS graph of order n. We prove
that sat(n,HP ) ≥ b3n−1

2 c − 2. Using the some properties of Isaacs’ snarks we
give, for every n ≥ 52, an HPS graph Gn of order n and size b3n−1

2 c. This proves
sat(n,HP ) ≤ b3n−1

2 c. We consider also the m-path cover saturated graphs and
the Pm-saturated graphs with small size.
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NEW VALUES AND BOUNDS FOR MULTICOLOR RAMSEY
NUMBERS

Tomasz Dzido

University of Gdańsk, Poland

The Ramsey number R(G1, G2, G3) is the smallest number n such that in
every 3-coloring of the edges of complete graph Kn with color red, blue and
green a red subgraph G1, a blue subgraph G2 or a green subgraph G3 occurs.
In this note we consider Ramsey numbers R(P3, Ck, Cm), where P3 is the path
on 3 vertices, and Ci is the cycle on i vertices. In addition, we present new
bounds for R(Ck, Ck, Ck) where k is even positive number. In this paper we
will present new results in this field as well as some conjectures.

Keywords: Ramsey numbers.
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THE UNIQUELY ONE-ONE REALIZABLE DEGREE SETS
BY MINIMUM IRREGULAR DIGRAPHS

Zyta Dziechcińska-Halamoda, Zofia Majcher, Jerzy Michael

University of Opole, Poland

and
Zdzis law Skupień

AGH University of Science and Technology, Kraków, Poland

A k-digraph (with multiplicities of arcs at most k, loops being allowed) is
called irregular if different vertices have distinct degree pairs. By a digraph
we mean a 1-digraph without loops. An oriented graph is a digraph without
2-cycles. A minimum irregular digraph is an irregular digraph with the mini-
mum size. In paper [1] sets of degree pairs of minimum irregular digraphs are
characterized. In this talk we give the list of all sets which have the unique
one-one realization in the classes of 1-digraphs, digraphs, oriented 1-graphs and
oriented graphs.

Keywords: irregular digraph, degree pair, unique realization.
AMS Subject Classification: 05C.
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[1] Z. Dziechcińska-Halamoda, Z. Majcher, J. Michael, Z. Skupień, Sets of
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EQUITABLE COLORING OF GRAPH PRODUCTS

Hanna Furmańczyk

University of Gdańsk, Poland

A graph is equitably k-colorable if its vertices can be partitioned into k
independent sets in such way that the number of vertices in any two sets differ
by at most one. The smallest k for which such coloring exists is known as the
equitable chromatic number of G and denoted by χ=(G). It is interesting to
note, that if a graph G is equitably k-colorable, it does not imply that it is
equitably (k + 1)-colorable. The smallest integer k for which G is equitably
k′-colorable for all k′ ≥ k is called the equitable chromatic threshold of G and
denoted by χ∗=(G). In the paper we establish the equitable chromatic number
and the equitable chromatic threshold for some products of some particular
graphs. We extend the results from [2] for Cartesian, weak and strong tensor
products, denoted by G1 ×G2, G1 ⊗G2, G12G2, respectively [1].

Keywords: equitable coloring, graph products.
AMS Subject Classification: 05C15, 68R10.
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INDUCED RAMSEY CLASSES

Izolda Gorgol

Technical University of Lublin, Poland

and
Mariusz Ha luszczak

University of Zielona Góra, Poland

Let F be a graph and G be its subgraph. We colour the edges of the
graph F with two colours and look for a monochromatic induced subgraph G′

isomorphic to G. We consider two types of appearance of G as an induced
subgraph. We say that G′ is a strong copy of G iff G′ is an induced subgraph
of F , monochromatic and isomophic to G. We say that G′ is a weak copy of G
iff G′ is isomorphic to G and induced in monochromatic subgraph of F . Let G
and H be the families of graphs and F be a graph.

The symbol F
is−→ (G,H) means that any 2-colouring (say red and blue) of

the edges of the graph F leads to either a strong red copy of a certain graph
from the family G or a blue strong copy of a certain graph from family H.
Similarly the symbol F

iw−→ (G,H) means that any 2-colouring of the edges of
the graph F leads to either a weak red copy of a certain graph from the family
G or a blue weak copy of a certain graph from family H.

We call a graph F strong critical for (G,H) iff F
is−→ (G,H) and for each

proper induced subgraph F ′ ¹ F holds F ′ is6−→ (G,H). The class of all strong
critical graphs for (G,H) we denote by =<c

s(G,H).
We call a graph F strong global minimal for (G,H) iff F

is−→ (G,H) and

for each proper subgraph F ′ ⊆ F holds F ′ is6−→ (G,H). The class of all strong
global minimal graphs for (G,H) we denote by =<g

s(G,H). We call a graph F

strong local minimal for (G,H) iff F
is−→ (G,H) and for each e ∈ E(F ) holds

F − e
is6−→ (G,H). The class of all strong local minimal graphs for (G,H) we

denote by =<l

s(G,H).
Analogously we define classes of all weak critical =<c

w(G,H), weak global
minimal =<g

w(G,H) and weak local minimal =<l

w(G,H) graphs for (G,H).
In the talk we show some properties of graphs in certain induced classes.

Keywords: Ramsey class, induced subgraph.
AMS Subject Classification: 05D10, 05C55.
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ON DOMINATION IN GRAPHS

Frank Göring

Technical University of Chemnitz, Germany

and
Jochen Harant

Technical University of Ilmenau, Germany

For a finite undirected graph G on n vertices continuous optimization prob-
lems taken over the n-dimensional cube are presented and it is proved that
their optimum values equal the domination number γ of G. An efficient ap-
proximation method is developed and known upper bounds on γ are slightly
improved.

Keywords: graph, domination.
AMS Subject Classification: 05C35.
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SIERPIŃSKI GRAPHS: L(2, 1)-COLORINGS AND PERFECT
CODES

Sylvain Gravier, Sandi Klavžar∗ and Michel Mollard
∗University of Maribor, Slovenia

Sierpiński graphs S(n, k) generalize the Tower of Hanoi graphs - the graph
S(n, 3) is isomorphic to the graph of the Tower of Hanoi with n disks. These
graphs were introduced in [1] and further studied in [2].

The λ-number of a graph G is the minimum value λ such that G admits
a coloring/labeling with colors from {0, 1, . . . , λ} where vertices at distance
two get different colors and adjacent vertices get colors that are at least two
apart. The main result of this talk asserts that for any n ≥ 2 and any k ≥ 3,
λ(S(n, k)) = 2k. To obtain the result (1-perfect) codes (1-perfect codes are also
known as efficient dominating sets) in Sierpiński graphs were studied in detail.
In particular a new proof of their (essential) uniqueness will be mentioned.
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COLOURING OF CONFIGURATIONS

Harald Gropp

Universität Heidelberg, Germany

A configuration is a linear regular uniform hypergraph. Since configurations
are much older than hypergraphs (they are even older than graphs), usually a
geometric language of points and lines is used.

The points are coloured by assigning a number (the colour) from 1 to n to
each point. A colouring is allowed if certain conditions are fulfilled. The usual
condition is that every line (or hyperedge) contains two points with different
colours. This leads to the definition of the chromatic number. In particular,
the existence problem of blocking sets of configurations is related to the usual
colouring.

The colouring of mixed hypergraphs (introduced by Voloshin) leads to the
definition of the upper chromatic number. Here also anti-edges or C-edges
are coloured such that every such C-edge contains two vertices with the same
colour.

Keywords: configurations, hypergraphs, colouring, chromatic number, upper
chromatic number.
AMS Subject Classification: 05B30, 05C15.
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HAPPY COLORINGS OF HYPERGRAPH COUPLES

Jaros law Grytczuk

University of Zielona Góra, Poland

Suppose H = (X, E) is a hypergraph on the set of vertices X and M = (Y,F)
is another hypergraph defined in some way on the set of hyperedges E of H,
that is Y = E . Then any coloring f of the vertices of H by colors from a set
C induces a vertex coloring of M by multisets of colors from C. If the later
coloring is proper we call f a happy coloring of H with respect to M and denote
the minimum number of colors needed by π(H,M).

There are many situations in which such couples of hypergraphs appear
naturally. For instance, let X be the set of positive integers and let E be
the family of all finite segments of consecutive numbers. Consider a graph M
in which two segments form an edge if they are adjacent, that is, if they are
disjoint, but their union is again a segment. An old problem of Erdős asked if
there is an infinite sequence over 4 symbols in which no two adjacent segments
are permutations of each other. This is equivalent to decide if π(H,M) = 4
holds for a couple (H, M) defined above.

Another nice example starts with a graph G without isolated edges. Let
X = E(G) and let E be the family of all maximal stars in G. Then M is a graph
in which two stars form an edge if their centers are adjacent vertices of G. In a
recent paper Karoński, ÃLuczak and Thomason proved that π(H, M) ≤ 183 for
any such couple.

We will present some further results and several open problems of the above
type.
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GRAPHS WITH LARGE DOUBLE DOMINATION NUMBER

Michael A. Henning

University of Natal, Pietermaritzburg, Republic of South Africa

In a graph G = (V, E), a vertex dominates itself and its neighbors. A
subset of vertices S of V is a double dominating set if every vertex in V is
dominated at least twice. The minimum cardinality of a double dominating set
of G is the double domination number of G, denoted γ×2(G). If G 6= C5 is a
connected graph of order n with minimum degree at least 2, then we show that
γ×2(G) ≤ 3n/4 and we characterize those graphs achieving equality.
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ON COMPLETE TRIPARTITE GRAPHS ARBITRARILY
DECOMPOSABLE INTO CLOSED TRAILS

Mirko Horňák and Zuzana Kocková

P.J. Šafárik University, Košice, Slovakia

Let G be an even graph (all its vertices are of even degrees), let Lct(G) be
the set of all lengths of closed trails in G and let Sct(G) be the set of all finite
sequences whose terms belong to Lct(G) and sum up to |E(G)|. The graph G is
said to be arbitrarily decomposable into closed trails (ADCT for short) if for any
sequence (l1, . . . , lq) ∈ Sct(G) there is a sequence (T1, . . . , Tq) of closed trails in
G such that Ti is of lenth li for any i ∈ {1, . . . , q} and {E(Ti) : i = 1, . . . , q} is
a decomposition of E(G). The following graphs are known to be ADCT: Kn

for n odd, Kn − Mn for n even, where Mn is a perfect matching in Mn (see
Balister [1]), Km,n for m,n even (see Horňák and Woźniak [2]).

Theorem 1. If the graph Kp,q,r with p ≤ q ≤ r is ADCT, then either (p, q, r) ∈
{(1, 1, 3), (1, 1, 5)} or p = q = r.

Theorem 2. The following graphs are ADCT: K1,1,3, K1,1,5 and Kn,n,n with
n ∈ {1, 2, 3, 4} or n = 5 · 2k where k is a nonnegative integer.

Keywords: complete tripartite graph, closed trail, edge decomposition.
AMS Subject Classification: 05C70.
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[2] M. Horňák, M. Woźniak, Decomposition of complete bipartite even graphs
into closed trails, Czechoslovak Math. J. 53 (128) (2003) 127–134.



34 abstracts

ESTIMATION OF CUT-VERTICES IN EDGE-COLOURED
COMPLETE GRAPHS

Adam Idzik

Świȩtokrzyska Academy, Kielce and Polish Academy of Sciences, Warsaw, Poland

Given a k-edge-coloured graph G = (V, E1, ..., Ek), we define F i = E \ Ei,
Gi = (V,Ei), Ḡi = (V, F i), where E =

⋃
i∈{1,...,k}Ei and i ∈ {1, ..., k}. Here Gi

is a monochromatic subgraph of G and Ḡi is its complement in G.

The following theorem [1] is under discussion.

Let (E1, ..., Ek) be a k-edge-colouring of Km (k ≥ 2, m ≥ 4), such that all the
graphs Ḡ1, · · · , Ḡk are connected.

(i) If one of the subgraphs G1, · · · , Gk is 2-connected, say Gi, then c(Ḡi) ≤
m− 2 and c(Ḡj) = 0 for j 6= i (i, j ∈ {1, ..., k}).

(ii) If none of the graphs G1, · · · , Gk is 2-connected, and one of them is con-
nected, say Gi, then c(Ḡi) ≤ 2 (i ∈ {1, ..., k}).

(iii) If none of the graphs G1, ..., Gk is 2-connected, and one of them is dis-
connected, say Gi, then c(Ḡi) ≤ 1 (i ∈ {1, ..., k}).

Keywords: complete graph, connected graph, cut-vertex, edge-colouring.
AMS Subject Classification: 05C35, 05C40, 68R10.
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COMBINATORIAL LEMMAS FOR NONORIENTED
PSEUDOMANIFOLDS

Adam Idzik

Świȩtokrzyska Academy, Kielce and Polish Academy of Sciences, Warsaw, Poland

and
Konstanty Junosza-Szaniawski

Warsaw University of Technology, Poland

For a set A ⊂ Rn let co A denote a convex hull of A. Let P ⊂ Rn be
a polytope, Tr a triangulation of the polytope P , V (δ) the set of vertices of
a simplex δ ∈ Tr and V =

⋃
δ∈Tr V (δ). A function l : V → Rn is called a

labeling. A simplex δ ∈ Tr is balanced if 0 ∈ co l(V (δ)). We formulate general
boundary conditions for the labeling l to assure the existence of a balanced
simplex δ ∈ Tr. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz
type theorem for polytopes and we generalize some theorems of van der Laan,
Talman and Yang [1] and some theorems of Ichiishi and Idzik [2].

Keywords: pseudomanifold, labeling, KKM theorem.
AMS Subject Classification: 05B30, 47H10, 52A20, 54H25.
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DISTANCE COLORING OF THE HEXAGONAL LATTICE

Peter Jacko and Stanislav Jendrol’

P.J. Šafárik University, Košice, Slovakia

Motivated by the frequency assignment problem we study the d-distant
coloring of the vertices of an infinite plane hexagonal lattice H. Let d be a
positive integer. A d-distant coloring of a the lattice H is a coloring of the
vertices of H such that each pair of vertices distance at most d apart have
different colors. The d-distant chromatic number of H, denoted χd(H), is the
minimum number of colors needed for a d-distant coloring of H. We give the
exact value of χd(H) for any d.
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COMPETITIVE GRAPH COLORING

Hal Kierstead

Arizona State University, Tempe, USA

We shall survey recent results on various versions of a graph coloring game
originally introduced by Bodlander. These games are played as follows on a
graph G = (V,E) with a set of colors X. Two players, Alice and Bob, take
turns playing with Alice playing first. A play consists of two parts. First the
player chooses a vertex u that has not yet been colored. Then the player colors u
with a color that is legal for u. Different variations of the game are obtained by
changing the definition of a legal color and/or changing the number of vertices
the players are allowed to color on each turn. In Bodlander’s original game
a color α is legal for an uncolored vertex u if u does not have any neighbors
colored with α. Alice wins the game if eventually all the vertices are legally
colored; otherwise Bob wins the game when there comes a time when there
is an uncolored vertex that cannot be legally colored. The game chromatic
number, denoted by χg(G), of a graph G is the least integer t such that Alice
has a winning strategy for Bodlander’s original game when the game is played
with t colors. We shall also consider variations based on oriented coloring and
relaxed coloring. For example, if G is a planar graph then χg (G) ≤ 17, the
oriented game chromatic number of G is bounded by an absolute constant and
the 132-relaxed game chromatic number of G is at most 3.

Keywords: game chromatic number, game coloring number, planar graph.
AMS Subject Classification: 05C15.
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ON THE CROSSING NUMBERS OF PRODUCTS OF SMALL
GRAPHS

Marián Klešč

Technical university, Košice, Slovak Republic

The crossing number cr(G) of a graph G is the minimum number of pairwise
intersections of edges in a drawing of G in the plane. Computing the crossing
number of a given graph is in general an elusive problem, and the crossing
numbers of very few families of graphs are known. There are known exact
results on the crossing numbers of Cartesian products of paths, cycles or stars
with all graphs of order four (see [1] and [2]). It thus seems natural to inquire
about the crossing numbers of the products of 5-vertex graphs with cycles,
paths or stars.

Let Cn and Pn be the cycle and the path with n edges, and Sn the star
K1,n. The table in [3] summarizes the known crossing numbers of Cartesian
products Gj × Pn, Gj × Cn, and Gj × Sn for connected 5-vertex graphs Gj .
For arbitrary large n, the crossing numbers of Cn × Gj are known only for 14
of 21 connected graphs Gj of order five. But only for five of them the crossing
numbers of Cn×Gj are known for n = 3, 4 and 5. The purpose of this talk is to
present up to now unknown exact values of crossing numbers of the Cartesian
products Cn × Gj for n = 3, 4 and 5. In addition, we present some methods,
which have been used to prove these results.

Keywords: graph, cycle, drawing, crossing number.
AMS Subject Classification: 05C10.
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ON (k, l)-KERNEL PERFECTNESS OF SPECIAL CLASSES
OF DIGRAPHS

Magdalena Kucharska

Technical University of Szczecin, Poland

Concept on kernel-perfect digraph is well know in literature. A (k, l)-kernel
perfect digraph is the generalization of this digraph. A directed graph D such
that every induced subdigraph of D has a (k, l)-kernel is called (k, l)-kernel
perfect digraph. For explanation, we recall that a subset J ⊆ V (D) is a (k, l)-
kernel of D if

(1) for every x, y ∈ J and x 6= y, dD(x, y) ≥ k and

(2) for every x ∈ V (D) \J there exists y ∈ J such that dD(x, y) ≤ l, for fixed
integers k ≥ 2, l ≥ 1,

where dD(x, y) denotes the distance from x to y in D.
We present some necessary and sufficient conditions for special classes of

digraphs to be (k, l)-kernel perfect digraphs.

Keywords: kernel, (k, l)-kernel, kernel perfect digraph.
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SPECIAL KINDS OF WELL COVEREDNESS OF
GENERALIZED CARTESIAN PRODUCT OF GRAPHS

Maria Kwaśnik and Daniel  Locman

Technical University of Szczecin, Poland

A graph is called well-covered (hereinafter w-c) if all maximal independent
set are the same size. The class of well-covered graphs, in which the NP-
complete problem with finding a maximum independent set is trivial, it was
first studied by M.D. Plummer ([3]) in 1970. There are known in the literature
some subclasses of class of w-c graphs. Well-covered point critical graphs ([5])
are those G whose are w-c graphs but for all vertices v ∈ V (G), G − v is not
w-c graph. A w-c graph G is said to be strongly well-covered ([2]) if for each
edge e ∈ E(G), G − e is a w-c graph. A locating dominating set of a graph
([1]) is such dominating set D that for every pair of vertices u and v not in D,
the neighbours of u in D differ in at least one vertex from the neighbours of v
in D. A graph is called well-located ([1]) if every its independent dominating
set is locating. It has been proved in [1] that well-located graphs are in fact
w-c graphs. We present some results developed in this area with respect to the
generalized Cartesian product of graphs (G1, . . . , Gn) and H.

Keywords: maximum independent, well-covered, generalized cartesian pro-
duct of graphs.
AMS Subject Classification: 05C69, 05C70.
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EXTENDABILITY AND NEAR PERFECTNESS OF GRAPH
PRODUCTS

Maria Kwaśnik and Monika Perl

Technical University of Szczecin, Poland

A graph G is said to be k-extendable ([2]) if it is connected, has a perfect
matching (a 1-factor) and every matching of cardinality k in G can be extend to
(i.e., is a subset of) a perfect matching. We present some results which answer
the question how highly extendable are two products of graphs: the corona and
the Cartesian product of graphs.

A subset S of vertices of a graph G is called nearly perfect ([1]) if every vertex
in V (G)−S is adjacent to at most one vertex in S. A natural problem is to study
the extremal such subsets and their cardinalities. Some results concerning these
problem with respect to the corona and the Cartesian product are developed.

Keywords: domination, matching, products of graphs.
AMS Subject Classification: 05C69, 05C70.
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DOMINATING NUMBERS IN GRAPHS WITH REMOVED
EDGE OR SET OF EDGES

Magdalena Lemańska

Gdańsk University of Technology, Poland

It is known, that the removal of an edge from G cannot decrease a domina-
tion number γ(G) and can increase it by at most one. Thus we can write, that
γ(G) ≤ γ(G− e) ≤ γ(G) + 1 when arbitrary edge is removed. Here we present
similar inequalities for weakly connected domination number γw and connected
domination number γc, i.e. we show, that γw(G) ≤ γw(G− e) ≤ γw(G) + 1 and
γc(G) ≤ γc(G− e) ≤ γc(G) + 2 if G and G− e are connected.

We also show that γw(G) ≤ γw(G − Ep) ≤ γw(G) + p − 1 and γc(G) ≤
γc(G−Ep) ≤ γw(G) + 2p− 2 if G and G−Ep are connected and Ep = E(Kp)
where Kp ≤ G is the complete subgraph of G.

The distance d(u, v) between two vertices u and v in a connected graph G is
the length of the shortest u−v path in G. A u−v path of length d(u, v) is called
u − v geodesic. A set X ⊂ V is called weakly convex if for every two vertices
a, b ∈ X exists a − b geodesic whose vertices also belong to X and X is called
convex if for every two vertices a, b ∈ X, vertices from every a− b geodesic also
belong to X. We define two new domination parameters γwcon and γcon.

The weakly convex domination number of G, denoted γwcon(G), is min{|D| :
D is a minimal weakly convex dominating set of G}, while the convex dom-
ination number of G, denoted γcon(G), is min{|D| : D is a minimal convex
dominating set of G}.

For numbers γwcon and γcon we show, that differences γwcon(G)−γwcon(G− e),
γwcon(G− e)− γwcon(G), γcon(G)− γcon(G− e), γcon(G− e)− γcon(G) can be
arbitrarily large.

Keywords: connected dominating number, weakly connected dominating num-
ber, edge removal.
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DOMINATING BIPARTITE SUBGRAPHS IN GRAPHS

Danuta Michalak

University of Zielona Góra, Poland

A graph G is hereditarily dominated by a class of connected graphs D if
each connected induced subgraph of G contains dominating induced subgraph
belonging to D. In this paper we determine graphs hereditarily dominated by
a class D1 = {K1,K1,1, ..., Kn−1,n : n ≥ 3}, D2 = {G : G = Ki,j , i ≥ 0, j ≥ 1}
and D3 = {G : G is a connected bipartite graph}.

Keywords: dominating set, dominating subgraph, induced forbidden sub-
graph.
AMS Subject Classification: 05C69, 05C38.
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CHARACTERISTIC OF HEREDITARY GRAPH PROPERTIES

Peter Mihók

Slovak Academy of Sciences and Technical University, Košice, Slovak Republic

Let ¹ be any well-founded partial order on the class of simple graphs I. A
graph theoretical invariant ρ is called ¹-monotone whenever for any pair G1, G2

of graphs G1 ¹ G2 implies ρ(G1) ≤ ρ(G2).
Any ¹-hereditary property P can be uniquely determined by the set of

minimal forbidden subgraphs of the property P defined in the following way:
F (P) = {G ∈ I \ P : each graph H ≺ G belongs to P}.

Note that F (P) may be finite or infinite. Another possibility to determine a
hereditary property P provide ¹-generating sets of P defined in the following
way: G is a generating set of P if and only if for any graph G ∈ P there is a
graph H ∈ G such that G ¹ H. More details on generating sets can be found
in [1, 6].

In the study of generalized colourings of graphs the partial order ”to be a
subgraph“ is of the most importance. For this partial order we shall omit the
symbol ”⊆“ and simply say that a property is hereditary. A property is said to
be additive if it is closed under taking disjoint union of graphs.
Example 1. For an illustration we list some additive hereditary properties.
O = {G ∈ I : G is edgeless, i.e. E(G) = ∅},
Ok = {G ∈ I : each component of G has at most k + 1 vertices},
Sk = {G ∈ I : the maximum degree ∆(G) ≤ k},
Wk = {G ∈ I : the order of the longest path τ(G) ≤ k + 1},
Dk = {G ∈ I : G is k-degenerate, i.e. the minimum degree δ(H) ≤ k

for each H ⊆ G},
Ik = {G ∈ I : G does not contain Kk+2},
Ok = {G ∈ I : G is k-colorable}.

Let us introduce for an arbitrary graph theoretical invariant ρ and a ¹-
hereditary property P the following characteristics (see [2, 3, 4]):

ρ(P) = min{ρ(F ) : F ∈ F (P)} and cρ(P) = sup{ρ(F ) : F ∈ P}.
It is easy to see that the value ρ(P) is always finite and the value cρ(P) can

be finite or infinite. For the chromatic number χ the invariant ψ(P) = χ(P)−1
is known as subchromatic number or index of the property P (cf. [2]). The
value cω(P)− 1 if often called completeness of a property.

A graph theoretical invariant ρ is called ¹-monotone whenever for any pair
G1, G2 of graphs satisfying G1 ¹ G2 holds ρ(G1) ≤ ρ(G2). A graph invariant
ρ is called additive whenever for any two graphs G and H holds the following:
ρ(G ∪H) = max{ρ(G), ρ(H)}.
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Example 2. The properties Ik, Ok, Dk, Sk and Ok mentioned above can
be uniquely determined by the graph theoretical invariants ω(G) - the clique
number, χ(G) - the chromatic number, col(G) - the coloring number (see [5]),
∆(G) - maximum degree and o(G) - the order of the largest component of G.
It is known that for any graph G the following inequalities hold:

ω(G) ≤ χ(G) ≤ col(G) ≤ ∆(G) + 1 ≤ o(G).

It implies that Ok ⊂ Sk ⊂ Dk ⊂ Ok+1 ⊂ Ik. Moreover, it is easy to see
that some other well-known invariants like choice number can be included into
similar chains.

The following assertions follows almost immediately from the definitions.
Let ¹ be a partial order on I. Let ρ be ¹-monotone invariant and P be a

¹-hereditary property. If G is a ≺-generating set of P then

cρ(P) = sup{ρ(G) : G ∈ G}.
Proposition 1. Let ρ be an additive ¹-monotone invariant and P,P∗ be
¹-hereditary properties. Then for the meet and the join of the properties P and
P∗ (in the lattice La

¹ of additive ¹-hereditary properties) holds the following:
(i) ρ(P ∧ P∗) = min{ρ(P), ρ(P∗)};
(ii) ρ(P ∨ P∗) ≥ max{ρ(P), ρ(P∗)};
(iii) cρ(P ∨ P∗) = sup{cρ(P), cρ(P∗)};
(iv) cρ(P ∧ P∗) ≤ inf{cρ(P), cρ(P∗)};

From the previous result it follows that, if two properties have finite values
of the invariant cρ then their intersection has finite value of cρ, too. Moreover,
it is not difficult to see that the properties with finite value of cρ forms an ideal
of the lattice of additive ¹-hereditary properties. In the case of the intersection
of two properties with infinite characteristic cρ the situation is much more
complicated.

Consider a ¹-monotone graph theoretical invariant ρ. It is not difficult to
verify that for any non-negative integer k the property P(ρ,k) = {G ∈ I : ρ(G) ≤
k} is ¹-hereditary. Moreover, if ρ is also additive then the property P(ρ,k) is
additive too.

On the other hand, if P0 ⊆ P1 ⊆ P2 ⊆ · · · is a chain of ¹-properties and s0

is a non-negative integer, then we can define a new graph theoretical invariant
ρ associated to this chain in the following way: for any graph G ∈ P0 let us put
ρ(G) = s0 and for an arbitrary positive integer s let ρ(G) = s0 +s if and only if
G belongs to Ps \Ps−1. In addition, if the properties P0,P1,P2, . . . are additive
then the defined invariant ρ is additive too. In many cases it is natural and
useful to put the initial value s0 equal to zero. One can easily observe that if for
some non-negative integer k we have the equality Pk = Pk+1 then the defined
invariant does not attain the value k + 1 for any graph G ∈ I. Moreover, if
there is an index k0 such that for any k > k0 the equality Pk0 = Pk holds then
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P O Ok Sk Wk Dk Ok+1 Ik

ω 2 2 2 2 2 2 k+2
cω 1 k+1 k+1 k+1 k+1 k+1 k+1
χ 2 2 2 2 2 k+2 k+2
cχ 1 k+1 k+1 k+1 k+1 k+1 ∞
col 2 2 2 2 k+2 k+2 k+2

c col 1 k+1 k+1 k+1 k+1 ∞ ∞
∆ + 1 2 3 k+2 3 k+2 k+2 k+2
c∆+1 1 k+1 k+1 ∞ ∞ ∞ ∞

Table 1: Values of cρ and ρ for some examples of hereditary properties

the invariant associated to this chain gets value at most k0 for an arbitrary
graph G ∈ I.
Proposition 2. Let P be a ¹-hereditary property and ρ be a graph theoretical
invariant. Then cρ(P) is finite if and only if there exists a positive integer k
such that P ⊆ P(ρ,k).
Example 3. Let Bi, i = 0, 1, 2, . . . be hereditary properties defined in terms of
their set of forbidden subgraphs in the following way: F(Bi) = {Km,n : m+n =
i + 2}. Then is clear that they form a chain of the lattice La and for any graph
G ∈ I the invariant associated to this chain determines the order of the largest
complete bipartite graph contained in G.

Some more details and many other examples on the relationship between
invariants will be presented. The talk is based on an unpublished paper by M.
Jacobson, P. Mihók and G. Semanǐsin.
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DOMINATION AND INDEPENDENCE IN GRAPH PRODUCTS

Douglas F. Rall

Furman University, Greenville, USA

The study of how graphical parameters act on graph products has provided
some of the most difficult open problems in graph theory. Classical exam-
ples from coloring, independence and domination are Hedetniemi’s conjecture,
Shannon capacity and Vizing’s conjecture.

A graphical parameter σ is said to be multiplicative with respect to the
graph product ⊗ if one of the following holds for all graphs G and H

• σ(G⊗H) ≥ σ(G)σ(H),

• σ(G⊗H) ≤ σ(G)σ(H).

In this talk we consider whether some of the domination and independence
parameters are multiplicative with respect to several of the common graph
products (e.g., Cartesian, categorical). In addition, we report on recent work
related to finding bounds on σ(G ⊗ H) in terms of σ(G)σ(H) in these same
contexts.

Keywords: graph products, domination, independence, multiplicative.
AMS Subject Classification: 05C69, 05C70.
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RAMSEY AND RAINBOW COLOURINGS

Ingo Schiermeyer

Freiberg University of Mining and Technology, Freiberg, Germany

In this talk we consider edge colourings of graphs. For given graphs F1, F2,
. . . , Fk, k ≥ 2, the Ramsey number r(F1, . . . , Fk) is the smallest integer n such
that if we arbitrarily colour the edges of the complete graph of order n with k
colours, then there is always a monochromatic copy of some Fi for 1 ≤ i ≤ k.
We will list the Ramsey numbers if the graphs Fi are complete or cycles and
report about recent progress on some conjectures of Erdős ([2], [3]).

For given graphs G,H the rainbow number rb(G,H) is the smallest number
m of colours such that if we colour the edges of G with at least m different
colours, then there is always a totally multicoloured or rainbow copy of H.
For various graph classes of H we will list the known rainbow numbers if G
is the complete graph [1] and report about recent progress on the conjecture
of Erdős, Simonovits and Sós on the rainbow numbers rb(Kn, Ck) for cycles.
Finally, new results on the rainbow numbers rb(Qn, Q2) for the hypercube Qn

will be presented.

Keywords: edge colouring, Ramsey, rainbow, extremal graphs.
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ON GENERALIZED k-DEGENERATE GRAPHS

Gabriel Semanǐsin

P.J. Šafárik University, Košice, Slovak Republic

Let k be a non-negative integer. A graph is called k-degenerate if the min-
imum degree of each its subgraph is at most k. The basic characterization of
k-degenerate graphs can be found in [2]. The degree sequences of k-degenerate
graphs were characterized in [1].

The property “to be a k-degenerate graph” is additive and hereditary and
plays an important role in the lattice of additive induced-hereditary properties
of graphs. Its position in the lattice was described in [3] and [4].

Let P be a hereditary property of graphs, let G be a graph and let v be a
vertex of G. We introduce a P-degree of v in the following way:

degPG(v) = max{k : there exist sets V1 ∪ V2 ∪ · · · ∪ Vk ⊆ V (G) s.t. for each i

G[Vi] ∼= F for some F ∈ F(P) and Vi ∩ Vj = {v} for each i 6= j},

where F(P) is the set of minimal forbidden subgraphs (in the case of the ordi-
nary vertex degree we have only one forbidden graph, namely K2).

Using this invariant we can define the property “to be k-degenerate with re-
spect to P” and discuss its position in the lattice of additive induced-hereditary
properties of graphs.

Keywords: k-degenerate graph, generalized colouring, hereditary property,
minimal reducible bound.
AMS Subject Classification: 05C15.
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TREES WITH NUMEROUS EXTREMAL SUBFORESTS

Zdzis law Skupień

AGH University of Science and Technology, Kraków, Poland

A review of results, old and new, on the structure of n-vertex trees with
maximal numbers of some selected extremal subforests will be presented.

These subforests are some factors (e.g., maximum linear forests), maximal
matchings, maximal independent sets, or kernels with various distance bounds.

Keywords: tree, independent set, kernel, maximizing cardinality, structure.
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ON SELF-COMPLEMENTARY SUPERGRAPHS
OF (N,N)-GRAPHS

A. Pawe l Wojda, Mariusz Woźniak and Irmina A. Zio lo

AGH University of Science and Technology, Kraków, Poland

We consider simple graphs without loops and multiple edges.
An embedding of a graph G is a permutation σ on V (G) such that if an edge

xy belongs to E(G) then σ(x)σ(y) does not belong to E(G). If there exists an
embedding of G we say that G is embeddable.

A graph G of order n ≡ 0, 1 (mod 4) is self-complementary if it is isomor-
phic to its complement. A graph G of order n ≡ 2, 3 (mod 4) is almost self-
complementary if G is of size 1

2(
(n
2

)−1) and G is a subgraph of its complement.
It is evident that subgraphs of self-complementary graphs are embeddable.

In general the converse is not true. It is proved that every embeddable graph
of order n and size at most n−1 is a subgraph of self-complementary or almost
self-complementary, respectively, graph of order n ([1] cases n ≡ 0, 1 (mod 4),
[2] cases n ≡ 2, 3 (mod 4)). We prove that, with one exception, for each em-
beddable graph of order n and size n there exists a self-complementary or an
almost self-complementary, respectively, supergraph of order n.

Keywords: packing of graphs, self-complementary graph.
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ON THE SPLIT DOMINATION NUMBER
OF THE CARTESIAN PRODUCT OF PATHS

Maciej Zwierzchowski

Technical University of Szczecin, Poland

Let D be a dominating set of G. If the subgraph induced by the subset
V (G) − D is disconnected, then D is called a split dominating set of G. By
γs(G) we mean the cardinality of the smallest split dominating set of G and
we call it the split domination number of G. The concept of split domination
comes from [2].

In this paper we discuss the split domination number with respect to the
Cartesian product of paths. Motivation of this problem comes from [1], where
was study the domination number of Pm×Pn. We calculate the γs(P2×Pn) and
estimate the γs(Pm × Pn) using the domination number of Pm × Pn. Further,
we discuss a γs(Pm × Pn) with respect to large integer m and n.

Keywords: domination number, split domination number, Cartesian product
of graphs.
AMS Subject Classification: 05C69.
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Adam Wysoczański a.wysoczanski@im.uz.zgora.pl
Irmina A. ZioÃlo ziolo@uci.agh.edu.pl
Maciej Zwierzchowski mzwierz@ps.pl



late abstracts 55

A COMPLETE PROOF OF A HOLYER PROBLEM

Krzysztof Bryś and Zbigniew Lonc

Warsaw University of Technology, Poland

In this paper we deal with so-called edge decompositions of graphs. A set
of graphs {G1, ..., Gs} is called a decomposition of a graph G if E(G1) ∪ ... ∪
E(Gs) = E(G) and E(Gi) ∩ E(Gj) = ∅, for i 6= j. Let H be a graph. An
H-decomposition is a decomposition {G1, G2, ..., Gs} of G such that each Gi is
isomorphic to H. For vertex disjoint graphs G and H let G∪H be their union
and let pH be the disjoint union of p copies of H. Denote by Pk the k-vertex
path.

Holyer [3] raised the problem of establishing the complexity status of the
problem PH of existence of an H-decomposition of a graph G, where H is not
a part of the instance. He proved the NP-completeness of the problem PH for
complete graphs of order at least 3, for paths Pk, k ≥ 4 and for cycles.

Alon [1] proved polynomiality of the problem PH when H = sP2, for any
fixed positive integer s. Priesler and Tarsi [5] showed that PH is polynomial
when H = P3 ∪ tP2 and t is any fixed positive integer.

Dor and Tarsi [2] proved a strong result that the problem PH is NP-complete
whenever H contains a connected component with at least 3 edges. They conjec-
tured that PH is polynomial in the remaining cases, i.e. when H = sP3 ∪ tP2.
Lonc [4] proved polynomiality of PH for H = sP3.

In this contribution we solve completely the problem of classifying the prob-
lems PH according to their computational complexity by proving the following
theorem.
Theorem 1. The problem PH , where H = sP3 ∪ tP2, is polynomial.

We have found a polynomial algorithm checking if G admits an sP3 ∪ tP2-
decomposition.
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The embedding of a graph G in a book consists of placing the vertices of G
on the spine in some order and assigning each edge of G to one of the pages in
such a way, that the edges assigned to one page do not cross. The page number
of G is the smallest number k such that G has a book embedding on k pages.

In some applications, orderings of vertices on the spine are restricted to
linear extensions of a partially ordered set P . In such case one may define the
page number of P .

Several lower and upper bounds to the page number of a poset P have been
established, e.g. in the terms of the clique number and vertex covers of the
digram of P , and also in the terms the jump number of P . It follows from
the latter bound that the page number of P is 1 iff the diagram of P has no
cycle. We shall use the same bound to provide families of posets with page
number 2. The problem of complete characterization of such posets seems to
be very difficult. Its complexity status is still open and it is known that the
recognition problem of graphs with page number 2 is NP-complete.


